Visible to the public Biblio

Filters: Keyword is dynamic programming algorithm  [Clear All Filters]
2019-05-01
Borra, V. S., Debnath, K..  2018.  Dynamic programming for solving unit commitment and security problems in microgrid systems. 2018 IEEE International Conference on Innovative Research and Development (ICIRD). :1–6.

In order to meet the demand of electrical energy by consumers, utilities have to maintain the security of the system. This paper presents a design of the Microgrid Central Energy Management System (MCEMS). It will plan operation of the system one-day advance. The MCEMS will adjust itself during operation if a fault occurs anywhere in the generation system. The proposed approach uses Dynamic Programming (DP) algorithm solves the Unit Commitment (UC) problem and at the same time enhances the security of power system. A case study is performed with ten subsystems. The DP is used to manage the operation of the subsystems and determines the UC on the situation demands. Faults are applied to the system and the DP corrects the UC problem with appropriate power sources to maintain reliability supply. The MATLAB software has been used to simulate the operation of the system.

2018-02-21
Zheng, H., Zhang, X..  2017.  Optimizing Task Assignment with Minimum Cost on Heterogeneous Embedded Multicore Systems Considering Time Constraint. 2017 ieee 3rd international conference on big data security on cloud (bigdatasecurity), ieee international conference on high performance and smart computing (hpsc), and ieee international conference on intelligent data and security (ids). :225–230.
Time and cost are the most critical performance metrics for computer systems including embedded system, especially for the battery-based embedded systems, such as PC, mainframe computer, and smart phone. Most of the previous work focuses on saving energy in a deterministic way by taking the average or worst scenario into account. However, such deterministic approaches usually are inappropriate in modeling energy consumption because of uncertainties in conditional instructions on processors and time-varying external environments. Through studying the relationship between energy consumption, execution time and completion probability of tasks on heterogeneous multi-core architectures this paper proposes an optimal energy efficiency and system performance model and the OTHAP (Optimizing Task Heterogeneous Assignment with Probability) algorithm to address the Processor and Voltage Assignment with Probability (PVAP) problem of data-dependent aperiodic tasks in real-time embedded systems, ensuring that all the tasks can be done under the time constraint with areal-time embedded systems guaranteed probability. We adopt a task DAG (Directed Acyclic Graph) to model the PVAP problem. We first use a processor scheduling algorithm to map the task DAG onto a set of voltage-variable processors, and then use our dynamic programming algorithm to assign a proper voltage to each task and The experimental results demonstrate our approach outperforms state-of-the-art algorithms in this field (maximum improvement of 24.6%).