Biblio
The article deals with the aspects of IT-security of business processes, using a variety of methodological tools, including Integrated Management Systems. Currently, all IMS consist of at least 2 management systems, including the IT-Security Management System. Typically, these IMS cover biggest part of the company business processes, but in practice, there are examples of different scales, even within a single facility. However, it should be recognized that the total number of such projects both in the Russian Federation and in the World is small. The security of business processes will be considered on the example of the incident of Norsk Hydro. In the article the main conclusions are given to confirm the possibility of security, continuity and recovery of critical business processes on the example of this incident.
Given a model with multiple input parameters, and multiple possible sources for collecting data for those parameters, a data collection strategy is a way of deciding from which sources to sample data, in order to reduce the variance on the output of the model. Cain and Van Moorsel have previously formulated the problem of optimal data collection strategy, when each arameter can be associated with a prior normal distribution, and when sampling is associated with a cost. In this paper, we present ADaCS, a new tool built as an extension of PRISM, which automatically analyses all possible data collection strategies for a model, and selects the optimal one. We illustrate ADaCS on attack trees, which are a structured approach to analyse the impact and the likelihood of success of attacks and defenses on computer and socio-technical systems. Furthermore, we introduce a new strategy exploration heuristic that significantly improves on a brute force approach.
Computer networks and surging advancements of innovative information technology construct a critical infrastructure for network transactions of business entities. Information exchange and data access though such infrastructure is scrutinized by adversaries for vulnerabilities that lead to cyber-attacks. This paper presents an agent-based system modelling to conceptualize and extract explicit and latent structure of the complex enterprise systems as well as human interactions within the system to determine common vulnerabilities of the entity. The model captures emergent behavior resulting from interactions of multiple network agents including the number of workstations, regular, administrator and third-party users, external and internal attacks, defense mechanisms for the network setting, and many other parameters. A risk-based approach to modelling cybersecurity of a business entity is utilized to derive the rate of attacks. A neural network model will generalize the type of attack based on network traffic features allowing dynamic state changes. Rules of engagement to generate self-organizing behavior will be leveraged to appoint a defense mechanism suitable for the attack-state of the model. The effectiveness of the model will be depicted by time-state chart that shows the number of affected assets for the different types of attacks triggered by the entity risk and the time it takes to revert into normal state. The model will also associate a relevant cost per incident occurrence that derives the need for enhancement of security solutions.
Security breaches and attacks are becoming a more critical and, simultaneously, a challenging problems for many firms in networked supply chains. A game theory-based model is developed to investigate how interdependent feature of information security risk influence the optimal strategy of firms to invest in information security. The equilibrium levels of information security investment under non-cooperative game condition are compared with socially optimal solutions. The results show that the infectious risks often induce firms to invest inefficiently whereas trust risks lead to overinvest in information security. We also find that firm's investment may not necessarily monotonous changes with infectious risks and trust risks in a centralized case. Furthermore, relative to the socially efficient level, firms facing infectious risks may invest excessively depending on whether trust risks is large enough.
Supervisory control and data acquisition (SCADA) systems are the key driver for critical infrastructures and industrial facilities. Cyber-attacks to SCADA networks may cause equipment damage or even fatalities. Identifying risks in SCADA networks is critical to ensuring the normal operation of these industrial systems. In this paper we propose a Bayesian network-based cyber-security risk assessment model to dynamically and quantitatively assess the security risk level in SCADA networks. The major distinction of our work is that the proposed risk assessment method can learn model parameters from historical data and then improve assessment accuracy by incrementally learning from online observations. Furthermore, our method is able to assess the risk caused by unknown attacks. The simulation results demonstrate that the proposed approach is effective for SCADA security risk assessment.
The software supply chain is a source of cybersecurity risk for many commercial and government organizations. Public data may be used to inform automated tools for detecting software supply chain risk during continuous integration and deployment. We link data from the National Vulnerability Database (NVD) with open version control data for the open source project OpenSSL, a widely used secure networking library that made the news when a significant vulnerability, Heartbleed, was discovered in 2014. We apply the Alhazmi-Malaiya Logistic (AML) model for software vulnerability discovery to this case. This model predicts a sigmoid cumulative vulnerability discovery function over time. Some versions of OpenSSL do not conform to the predictions of the model because they contain a temporary plateau in the cumulative vulnerability discovery plot. This temporary plateau feature is an empirical signature of a security failure mode that may be useful in future studies of software supply chain risk.
Cloud computing is widely believed to be the future of computing. It has grown from being a promising idea to one of the fastest research and development paradigms of the computing industry. However, security and privacy concerns represent a significant hindrance to the widespread adoption of cloud computing services. Likewise, the attributes of the cloud such as multi-tenancy, dynamic supply chain, limited visibility of security controls and system complexity, have exacerbated the challenge of assessing cloud risks. In this paper, we conduct a real-world case study to validate the use of a supply chaininclusive risk assessment model in assessing the risks of a multicloud SaaS application. Using the components of the Cloud Supply Chain Cyber Risk Assessment (CSCCRA) model, we show how the model enables cloud service providers (CSPs) to identify critical suppliers, map their supply chain, identify weak security spots within the chain, and analyse the risk of the SaaS application, while also presenting the value of the risk in monetary terms. A key novelty of the CSCCRA model is that it caters for the complexities involved in the delivery of SaaS applications and adapts to the dynamic nature of the cloud, enabling CSPs to conduct risk assessments at a higher frequency, in response to a change in the supply chain.
Quantitative risk assessment is a critical first step in risk management and assured design of networked computer systems. It is challenging to evaluate the marginal probabilities of target states/conditions when using a probabilistic attack graph to represent all possible attack paths and the probabilistic cause-consequence relations among nodes. The brute force approach has the exponential complexity and the belief propagation method gives approximation when the corresponding factor graph has cycles. To improve the approximation accuracy, a region-based method is adopted, which clusters some highly dependent nodes into regions and messages are passed among regions. Experiments are conducted to compare the performance of the different methods.
In the network security risk assessment on critical information infrastructure of smart city, to describe attack vectors for predicting possible initial access is a challenging task. In this paper, an attack vector evaluation model based on weakness, path and action is proposed, and the formal representation and quantitative evaluation method are given. This method can support the assessment of attack vectors based on known and unknown weakness through combination of depend conditions. In addition, defense factors are also introduced, an attack vector evaluation model of integrated defense is proposed, and an application example of the model is given. The research work in this paper can provide a reference for the vulnerability assessment of attack vector.
In dynamic control centers, conventional SCADA systems are enhanced with novel assistance functionalities to increase existing monitoring and control capabilities. To achieve this, different key technologies like phasor measurement units (PMU) and Digital Twins (DT) are incorporated, which give rise to new cyber-security challenges. To address these issues, a four-stage threat analysis approach is presented to identify and assess system vulnerabilities for novel dynamic control center architectures. For this, a simplified risk assessment method is proposed, which allows a detailed analysis of the different system vulnerabilities considering various active and passive cyber-attack types. Qualitative results of the threat analysis are presented and discussed for different use cases at the control center and substation level.
Primary user emulation (PUE) attack is one of the main threats affecting cognitive radio (CR) networks. The PUE can forge the same signal as the real primary user (PU) in order to use the licensed channel and cause deny of service (DoS). Therefore, it is important to locate the position of the PUE in order to stop and avoid any further attack. Several techniques have been proposed for localization, including the received signal strength indication RSSI, Triangulation, and Physical Network Layer Coding. However, the area surrounding the real PU is always affected by uncertainty. This uncertainty can be described as a lost (cost) function and conditional probability to be taken into consideration while proclaiming if a PU/PUE is the real PU or not. In this paper, we proposed a combination of a Bayesian model and trilateration technique. In the first part a trilateration technique is used to have a good approximation of the PUE position making use of the RSSI between the anchor nodes and the PU/PUE. In the second part, a Bayesian decision theory is used to claim the legitimacy of the PU based on the lost function and the conditional probability to help to determine the existence of the PUE attacker in the uncertainty area.
To manage cybersecurity risks in practice, a simple yet effective method to assess suchs risks for individual systems is needed. With time-to-compromise (TTC), McQueen et al. (2005) introduced such a metric that measures the expected time that a system remains uncompromised given a specific threat landscape. Unlike other approaches that require complex system modeling to proceed, TTC combines simplicity with expressiveness and therefore has evolved into one of the most successful cybersecurity metrics in practice. We revisit TTC and identify several mathematical and methodological shortcomings which we address by embedding all aspects of the metric into the continuous domain and the possibility to incorporate information about vulnerability characteristics and other cyber threat intelligence into the model. We propose $\beta$-TTC, a formal extension of TTC which includes information from CVSS vectors as well as a continuous attacker skill based on a $\beta$-distribution. We show that our new metric (1) remains simple enough for practical use and (2) gives more realistic predictions than the original TTC by using data from a modern and productively used vulnerability database of a national CERT.
In enterprise environments, the amount of managed assets and vulnerabilities that can be exploited is staggering. Hackers' lateral movements between such assets generate a complex big data graph, that contains potential hacking paths. In this vision paper, we enumerate risk-reduction security requirements in large scale environments, then present the Agile Security methodology and technologies for detection, modeling, and constant prioritization of security requirements, agile style. Agile Security models different types of security requirements into the context of an attack graph, containing business process targets and critical assets identification, configuration items, and possible impacts of cyber-attacks. By simulating and analyzing virtual adversary attack paths toward cardinal assets, Agile Security examines the business impact on business processes and prioritizes surgical requirements. Thus, handling these requirements backlog that are constantly evaluated as an outcome of employing Agile Security, gradually increases system hardening, reduces business risks and informs the IT service desk or Security Operation Center what remediation action to perform next. Once remediated, Agile Security constantly recomputes residual risk, assessing risk increase by threat intelligence or infrastructure changes versus defender's remediation actions in order to drive overall attack surface reduction.
This paper presents the development and configuration of a virtually air-gapped cloud environment in AWS, to secure the production software workloads and patient data (ePHI) and to achieve HIPAA compliance.
Many cloud security complexities can be concerned as a result of its open system architecture. One of these complexities is multi-tenancy security issue. This paper discusses and addresses the most common public cloud security complexities focusing on Multi-Tenancy security issue. Multi-tenancy is one of the most important security challenges faced by public cloud services providers. Therefore, this paper presents a secure multi-tenancy architecture using authorization model Based on AAAS protocol. By utilizing cloud infrastructure, access control can be provided to various cloud information and services by our suggested authorization system. Each business can offer several cloud services. These cloud services can cooperate with other services which can be related to the same organization or different one. Moreover, these cooperation agreements are supported by our suggested system.