Visible to the public Biblio

Filters: Keyword is computer systems security  [Clear All Filters]
2020-03-09
Khan, Iqra, Durad, Hanif, Alam, Masoom.  2019.  Data Analytics Layer For high-interaction Honeypots. 2019 16th International Bhurban Conference on Applied Sciences and Technology (IBCAST). :681–686.

Security of VMs is now becoming a hot topic due to their outsourcing in cloud computing paradigm. All VMs present on the network are connected to each other, making exploited VMs danger to other VMs. and threats to organization. Rejuvenation of virtualization brought the emergence of hyper-visor based security services like VMI (Virtual machine introspection). As there is a greater chance for any intrusion detection system running on the same system, of being dis-abled by the malware or attacker. Monitoring of VMs using VMI, is one of the most researched and accepted technique, that is used to ensure computer systems security mostly in the paradigm of cloud computing. This thesis presents a work that is to integrate LibVMI with Volatility on a KVM, a Linux based hypervisor, to introspect memory of VMs. Both of these tools are used to monitor the state of live VMs. VMI capability of monitoring VMs is combined with the malware analysis and virtual honeypots to achieve the objective of this project. A testing environment is deployed, where a network of VMs is used to be introspected using Volatility plug-ins. Time execution of each plug-in executed on live VMs is calculated to observe the performance of Volatility plug-ins. All these VMs are deployed as Virtual Honeypots having honey-pots configured on them, which is used as a detection mechanism to trigger alerts when some malware attack the VMs. Using STIX (Structure Threat Information Expression), extracted IOCs are converted into the understandable, flexible, structured and shareable format.

2020-03-02
Hofnăr, Aurel-Dragoş, Joldoş, Marius.  2019.  Host Oriented Factor Normalizing Authentication Resource: More Secure Authentication for Legacy Systems. 2019 IEEE 15th International Conference on Intelligent Computer Communication and Processing (ICCP). :1–6.
Whenever one accesses a computer system there are three essential security issues involved: identification, authentication and authorization. The identification process enables recognition of an entity, which may be either a human, a machine, or another asset - e.g. software program. Two complementary mechanisms are used for determining who can access those systems: authentication and authorization. To address the authentication process, various solutions have been proposed in the literature, from a simple password to newer technologies based on biometrics or RFID (Radio Frequency Identification). This paper presents a novel scalable multi-factor authentication method, applicable to computer systems with no need of any hardware/software changes.
2018-06-11
Zegzhda, D., Zegzhda, P., Pechenkin, A., Poltavtseva, M..  2017.  Modeling of Information Systems to Their Security Evaluation. Proceedings of the 10th International Conference on Security of Information and Networks. :295–298.
In this paper1 is proposed a graph model, designed to solve security challenges of information systems (IS). The model allows to describe information systems at two levels. The first is the transport layer, represented by the graph, and the second is functional level, represented by the semantic network. Proposed model uses "subject-object" terms to establish a security policy. Based on the proposed model, one can define information system security features location, and choose their deployment in the best way. In addition, it is possible to observe data access control security features inadequacy and calculate security value for the each IS node. Novelty of this paper is that one can get numerical evaluation of IS security according to its nodes communications and network structure.
2018-02-21
Ristov, P., Mišković, T., Mrvica, A., Markić, Z..  2017.  Reliability, availability and security of computer systems supported by RFID technology. 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO). :1459–1464.

The implementation of RFID technology in computer systems gives access to quality information on the location or object tracking in real time, thereby improving workflow and lead to safer, faster and better business decisions. This paper discusses the quantitative indicators of the quality of the computer system supported by RFID technology applied in monitoring facilities (pallets, packages and people) marked with RFID tag. Results of analysis of quantitative indicators of quality compute system supported by RFID technology are presented in tables.