Biblio
Bitcoin was the first successful decentralized cryptocurrency and remains the most popular of its kind to this day. Despite the benefits of its blockchain, Bitcoin still faces serious scalability issues, most importantly its ever-increasing blockchain size. While alternative designs introduced schemes to periodically create snapshots and thereafter prune older blocks, already-deployed systems such as Bitcoin are often considered incapable of adopting corresponding approaches. In this work, we revise this popular belief and present CoinPrune, a snapshot-based pruning scheme that is fully compatible with Bitcoin. CoinPrune can be deployed through an opt-in velvet fork, i.e., without impeding the established Bitcoin network. By requiring miners to publicly announce and jointly reaffirm recent snapshots on the blockchain, CoinPrune establishes trust into the snapshots' correctness even in the presence of powerful adversaries. Our evaluation shows that CoinPrune reduces the storage requirements of Bitcoin already by two orders of magnitude today, with further relative savings as the blockchain grows. In our experiments, nodes only have to fetch and process 5GiB instead of 230GiB of data when joining the network, reducing the synchronization time on powerful devices from currently 5h to 46min, with even more savings for less powerful devices.
The challenge of maintaining confidentiality of stored and processed data in a remote database or cloud is quite urgent. Using homomorphic encryption may solve the problem, because it allows to compute some functions over encrypted data without preliminary deciphering of data. Fully homomorphic encryption schemes have a number of limitations such as accumulation of noise and increase of ciphertext extension during performing operations, the range of operations is limited. Nowadays a lot of homomorphic encryption schemes and their modifications have been investigated, so more than 25 reports on homomorphic encryption schemes have already been published on Cryptology ePrint Archive for 2016. We propose an overview of current Fully Homomorphic Encryption Schemes and analyze specific operations for databases which homomorphic cryptosystems allow to perform. We also investigate the possibility of sorting over encrypted data and present our approach to compare data encrypted by Multi-bit FHE scheme.