Visible to the public Biblio

Filters: Keyword is back-up procedures  [Clear All Filters]
2020-07-27
Xu, Shuiling, Ji, Xinsheng, Liu, Wenyan.  2019.  Enhancing the Reliability of NFV with Heterogeneous Backup. 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). :923–927.
Virtual network function provides tenant with flexible and scalable end-to-end service chaining in the cloud computing and data center environments. However, comparing with traditional hardware network devices, the uncertainty caused by software and virtualization of Network Function Virtualization expands the attack surface, making the network node vulnerable to a certain types of attacks. The existing approaches for solving the problem of reliability are able to reduce the impact of failure of physical devices, but pay little attention to the attack scenario, which could be persistent and covert. In this paper, a heterogeneous backup strategy is brought up, enhancing the intrusion tolerance of NFV SFC by dynamically switching the VNF executor. The validity of the method is verified by simulation and game theory analysis.
2020-03-02
Hamadah, Siham, Aqel, Darah.  2019.  A Proposed Virtual Private Cloud-Based Disaster Recovery Strategy. 2019 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT). :469–473.

Disaster is an unexpected event in a system lifetime, which can be made by nature or even human errors. Disaster recovery of information technology is an area of information security for protecting data against unsatisfactory events. It involves a set of procedures and tools for returning an organization to a state of normality after an occurrence of a disastrous event. So the organizations need to have a good plan in place for disaster recovery. There are many strategies for traditional disaster recovery and also for cloud-based disaster recovery. This paper focuses on using cloud-based disaster recovery strategies instead of the traditional techniques, since the cloud-based disaster recovery has proved its efficiency in providing the continuity of services faster and in less cost than the traditional ones. The paper introduces a proposed model for virtual private disaster recovery on cloud by using two metrics, which comprise a recovery time objective and a recovery point objective. The proposed model has been evaluated by experts in the field of information technology and the results show that the model has ensured the security and business continuity issues, as well as the faster recovery of a disaster that could face an organization. The paper also highlights the cloud computing services and illustrates the most benefits of cloud-based disaster recovery.

2019-02-14
Bae, S., Shin, Y..  2018.  An Automated System Recovery Using BlockChain. 2018 Tenth International Conference on Ubiquitous and Future Networks (ICUFN). :897-901.

The existing Disaster Recovery(DR) system has a technique for integrity of the duplicated file to be used for recovery, but it could not be used if the file was changed. In this study, a duplicate file is generated as a block and managed as a block-chain. If the duplicate file is corrupted, the DR system will check the integrity of the duplicated file by referring to the block-chain and proceed with the recovery. The proposed technology is verified through recovery performance evaluation and scenarios.

2018-02-21
Yalew, S. Demesie, Maguire, G. Q., Haridi, S., Correia, M..  2017.  Hail to the Thief: Protecting data from mobile ransomware with ransomsafedroid. 2017 IEEE 16th International Symposium on Network Computing and Applications (NCA). :1–8.

The growing popularity of Android and the increasing amount of sensitive data stored in mobile devices have lead to the dissemination of Android ransomware. Ransomware is a class of malware that makes data inaccessible by blocking access to the device or, more frequently, by encrypting the data; to recover the data, the user has to pay a ransom to the attacker. A solution for this problem is to backup the data. Although backup tools are available for Android, these tools may be compromised or blocked by the ransomware itself. This paper presents the design and implementation of RANSOMSAFEDROID, a TrustZone based backup service for mobile devices. RANSOMSAFEDROID is protected from malware by leveraging the ARM TrustZone extension and running in the secure world. It does backup of files periodically to a secure local persistent partition and pushes these backups to external storage to protect them from ransomware. Initially, RANSOMSAFEDROID does a full backup of the device filesystem, then it does incremental backups that save the changes since the last backup. As a proof-of-concept, we implemented a RANSOMSAFEDROID prototype and provide a performance evaluation using an i.MX53 development board.