Visible to the public Biblio

Filters: Keyword is user trust  [Clear All Filters]
2021-03-01
Houzé, É, Diaconescu, A., Dessalles, J.-L., Mengay, D., Schumann, M..  2020.  A Decentralized Approach to Explanatory Artificial Intelligence for Autonomic Systems. 2020 IEEE International Conference on Autonomic Computing and Self-Organizing Systems Companion (ACSOS-C). :115–120.
While Explanatory AI (XAI) is attracting increasing interest from academic research, most AI-based solutions still rely on black box methods. This is unsuitable for certain domains, such as smart homes, where transparency is key to gaining user trust and solution adoption. Moreover, smart homes are challenging environments for XAI, as they are decentralized systems that undergo runtime changes. We aim to develop an XAI solution for addressing problems that an autonomic management system either could not resolve or resolved in a surprising manner. This implies situations where the current state of affairs is not what the user expected, hence requiring an explanation. The objective is to solve the apparent conflict between expectation and observation through understandable logical steps, thus generating an argumentative dialogue. While focusing on the smart home domain, our approach is intended to be generic and transferable to other cyber-physical systems offering similar challenges. This position paper focuses on proposing a decentralized algorithm, called D-CAN, and its corresponding generic decentralized architecture. This approach is particularly suited for SISSY systems, as it enables XAI functions to be extended and updated when devices join and leave the managed system dynamically. We illustrate our proposal via several representative case studies from the smart home domain.
2021-02-01
Wickramasinghe, C. S., Marino, D. L., Grandio, J., Manic, M..  2020.  Trustworthy AI Development Guidelines for Human System Interaction. 2020 13th International Conference on Human System Interaction (HSI). :130–136.
Artificial Intelligence (AI) is influencing almost all areas of human life. Even though these AI-based systems frequently provide state-of-the-art performance, humans still hesitate to develop, deploy, and use AI systems. The main reason for this is the lack of trust in AI systems caused by the deficiency of transparency of existing AI systems. As a solution, “Trustworthy AI” research area merged with the goal of defining guidelines and frameworks for improving user trust in AI systems, allowing humans to use them without fear. While trust in AI is an active area of research, very little work exists where the focus is to build human trust to improve the interactions between human and AI systems. In this paper, we provide a concise survey on concepts of trustworthy AI. Further, we present trustworthy AI development guidelines for improving the user trust to enhance the interactions between AI systems and humans, that happen during the AI system life cycle.
2015-04-30
Sen, S., Guha, S., Datta, A., Rajamani, S.K., Tsai, J., Wing, J.M..  2014.  Bootstrapping Privacy Compliance in Big Data Systems. Security and Privacy (SP), 2014 IEEE Symposium on. :327-342.

With the rapid increase in cloud services collecting and using user data to offer personalized experiences, ensuring that these services comply with their privacy policies has become a business imperative for building user trust. However, most compliance efforts in industry today rely on manual review processes and audits designed to safeguard user data, and therefore are resource intensive and lack coverage. In this paper, we present our experience building and operating a system to automate privacy policy compliance checking in Bing. Central to the design of the system are (a) Legal ease-a language that allows specification of privacy policies that impose restrictions on how user data is handled, and (b) Grok-a data inventory for Map-Reduce-like big data systems that tracks how user data flows among programs. Grok maps code-level schema elements to data types in Legal ease, in essence, annotating existing programs with information flow types with minimal human input. Compliance checking is thus reduced to information flow analysis of Big Data systems. The system, bootstrapped by a small team, checks compliance daily of millions of lines of ever-changing source code written by several thousand developers.