Biblio
With the rapid development of Internet technology, the era of big data is coming. SQL injection attack is the most common and the most dangerous threat to database. This paper studies the working mode and workflow of the GreenSQL database firewall. Based on the analysis of the characteristics and patterns of SQL injection attack command, the input model of GreenSQL learning is optimized by constructing the patterned input and optimized whitelist. The research method can improve the learning efficiency of GreenSQL and intercept samples in IPS mode, so as to effectively maintain the security of background database.
Stealing confidential information from a database has become a severe vulnerability issue for web applications. The attacks can be prevented by defining a whitelist of SQL queries issued by web applications and detecting queries not in list. For large-scale web applications, automated generation of the whitelist is conducted because manually defining numerous query patterns is impractical for developers. Conventional methods for automated generation are unable to detect attacks immediately because of the long time required for collecting legitimate queries. Moreover, they require application-specific implementations that reduce the versatility of the methods. As described herein, we propose a method to generate a whitelist automatically using queries issued during web application tests. Our proposed method uses the queries generated during application tests. It is independent of specific applications, which yields improved timeliness against attacks and versatility for multiple applications.
With the development of smart grid, information and energy integrate deeply. For remote monitoring and cluster management, SCADA system of wind farm should be connected to Internet. However, communication security and operation risk put forward a challenge to data network of the wind farm. To address this problem, an active security defense strategy combined whitelist and security situation assessment is proposed. Firstly, the whitelist is designed by analyzing the legitimate packet of Modbus on communication of SCADA servers and PLCs. Then Knowledge Automation is applied to establish the Decision Requirements Diagram (DRD) for wind farm security. The D-S evidence theory is adopted to assess operation situation of wind farm and it together with whitelist offer the security decision for wind turbine. This strategy helps to eliminate the wind farm owners' security concerns of data networking, and improves the integrity of the cyber security defense for wind farm.