Visible to the public Biblio

Filters: Keyword is attack scenarios  [Clear All Filters]
2020-09-04
Saad, Muhammad, Cook, Victor, Nguyen, Lan, Thai, My T., Mohaisen, Aziz.  2019.  Partitioning Attacks on Bitcoin: Colliding Space, Time, and Logic. 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS). :1175—1187.
Bitcoin is the leading example of a blockchain application that facilitates peer-to-peer transactions without the need for a trusted intermediary. This paper considers possible attacks related to the decentralized network architecture of Bitcoin. We perform a data driven study of Bitcoin and present possible attacks based on spatial and temporal characteristics of its network. Towards that, we revisit the prior work, dedicated to the study of centralization of Bitcoin nodes over the Internet, through a fine-grained analysis of network distribution, and highlight the increasing centralization of the Bitcoin network over time. As a result, we show that Bitcoin is vulnerable to spatial, temporal, spatio-temporal, and logical partitioning attacks with an increased attack feasibility due to network dynamics. We verify our observations by simulating attack scenarios and the implications of each attack on the Bitcoin . We conclude with suggested countermeasures.
2020-08-17
Al Ghazo, Alaa T., Kumar, Ratnesh.  2019.  Identification of Critical-Attacks Set in an Attack-Graph. 2019 IEEE 10th Annual Ubiquitous Computing, Electronics Mobile Communication Conference (UEMCON). :0716–0722.
SCADA/ICS (Supervisory Control and Data Acqui-sition/Industrial Control Systems) networks are becoming targets of advanced multi-faceted attacks, and use of attack-graphs has been proposed to model complex attacks scenarios that exploit interdependence among existing atomic vulnerabilities to stitch together the attack-paths that might compromise a system-level security property. While such analysis of attack scenarios enables security administrators to establish appropriate security measurements to secure the system, practical considerations on time and cost limit their ability to address all system vulnerabilities at once. In this paper, we propose an approach that identifies label-cuts to automatically identify a set of critical-attacks that, when blocked, guarantee system security. We utilize the Strongly-Connected-Components (SCCs) of the given attack graph to generate an abstracted version of the attack-graph, a tree over the SCCs, and next use an iterative backward search over this tree to identify set of backward reachable SCCs, along with their outgoing edges and their labels, to identify a cut with a minimum number of labels that forms a critical-attacks set. We also report the implementation and validation of the proposed algorithm to a real-world case study, a SCADA network for a water treatment cyber-physical system.
2020-07-20
Urien, Pascal.  2019.  Designing Attacks Against Automotive Control Area Network Bus and Electronic Control Units. 2019 16th IEEE Annual Consumer Communications Networking Conference (CCNC). :1–4.
Security is a critical issue for new car generation targeting intelligent transportation systems (ITS), involving autonomous and connected vehicles. In this work we designed a low cost CAN probe and defined analysis tools in order to build attack scenarios. We reuse some threats identified by a previous work. Future researches will address new security protocols.
2020-06-29
Liang, Xiaoyu, Znati, Taieb.  2019.  An empirical study of intelligent approaches to DDoS detection in large scale networks. 2019 International Conference on Computing, Networking and Communications (ICNC). :821–827.
Distributed Denial of Services (DDoS) attacks continue to be one of the most challenging threats to the Internet. The intensity and frequency of these attacks are increasing at an alarming rate. Numerous schemes have been proposed to mitigate the impact of DDoS attacks. This paper presents a comprehensive empirical evaluation of Machine Learning (ML)based DDoS detection techniques, to gain better understanding of their performance in different types of environments. To this end, a framework is developed, focusing on different attack scenarios, to investigate the performance of a class of ML-based techniques. The evaluation uses different performance metrics, including the impact of the “Class Imbalance Problem” on ML-based DDoS detection. The results of the comparative analysis show that no one technique outperforms all others in all test cases. Furthermore, the results underscore the need for a method oriented feature selection model to enhance the capabilities of ML-based detection techniques. Finally, the results show that the class imbalance problem significantly impacts performance, underscoring the need to address this problem in order to enhance ML-based DDoS detection capabilities.
2020-03-02
Gupta, Diksha, Saia, Jared, Young, Maxwell.  2019.  Peace Through Superior Puzzling: An Asymmetric Sybil Defense. 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS). :1083–1094.

A common tool to defend against Sybil attacks is proof-of-work, whereby computational puzzles are used to limit the number of Sybil participants. Unfortunately, current Sybil defenses require significant computational effort to offset an attack. In particular, good participants must spend computationally at a rate that is proportional to the spending rate of an attacker. In this paper, we present the first Sybil defense algorithm which is asymmetric in the sense that good participants spend at a rate that is asymptotically less than an attacker. In particular, if T is the rate of the attacker's spending, and J is the rate of joining good participants, then our algorithm spends at a rate f O($\surd$(TJ) + J). We provide empirical evidence that our algorithm can be significantly more efficient than previous defenses under various attack scenarios. Additionally, we prove a lower bound showing that our algorithm's spending rate is asymptotically optimal among a large family of algorithms.

2019-10-15
Detken, K., Jahnke, M., Humann, M., Rollgen, B..  2018.  Integrity and Non-Repudiation of VoIP Streams with TPM2.0 over Wi-Fi Networks. 2018 IEEE 4th International Symposium on Wireless Systems within the International Conferences on Intelligent Data Acquisition and Advanced Computing Systems (IDAACS-SWS). :82–87.
The complete digitization of telecommunications allows new attack scenarios, which have not been possible with legacy phone technologies before. The reason is that physical access to legacy phone technologies was necessary. Regarding internet-based communication like voice over the internet protocol (VoIP), which can be established between random nodes, eavesdropping can happen everywhere and much easier. Additionally, injection of undesirable communication like SPAM or SPIT in digital networks is simpler, too. Encryption is not sufficient because it is also necessary to know which participants are talking to each other. For that reason, the research project INTEGER has been started with the main goals of providing secure authentication and integrity of a VoIP communication by using a digital signature. The basis of this approach is the Trusted Platform Module (TPM) of the Trusted Computing Group (TCG) which works as a hardware-based trusted anchor. The TPM will be used inside of wireless IP devices with VoIP softphones. The question is if it is possible to fulfill the main goals of the project in wireless scenarios with Wi-Fi technologies. That is what this contribution aims to clarify.
2018-02-21
Ibdah, D., Kanani, M., Lachtar, N., Allan, N., Al-Duwairi, B..  2017.  On the security of SDN-enabled smartgrid systems. 2017 International Conference on Electrical and Computing Technologies and Applications (ICECTA). :1–5.

Software Defined Networks (SDNs) is a new networking paradigm that has gained a lot of attention in recent years especially in implementing data center networks and in providing efficient security solutions. The popularity of SDN and its attractive security features suggest that it can be used in the context of smart grid systems to address many of the vulnerabilities and security problems facing such critical infrastructure systems. This paper studies the impact of different cyber attacks that can target smart grid communication network which is implemented as a software defined network on the operation of the smart grid system in general. In particular, we perform different attack scenarios including DDoS attacks, location highjacking and link overloading against SDN networks of different controller types that include POX, Floodlight and RYU. Our experiments were carried out using the mininet simulator. The experiments show that SDN-enabled smartgrid systems are vulnerable to different types of attacks.