Visible to the public Biblio

Filters: Keyword is interactive control  [Clear All Filters]
2022-03-14
Huang, Hao, Davis, C. Matthew, Davis, Katherine R..  2021.  Real-time Power System Simulation with Hardware Devices through DNP3 in Cyber-Physical Testbed. 2021 IEEE Texas Power and Energy Conference (TPEC). :1—6.
Modern power grids are dependent on communication systems for data collection, visualization, and control. Distributed Network Protocol 3 (DNP3) is commonly used in supervisory control and data acquisition (SCADA) systems in power systems to allow control system software and hardware to communicate. To study the dependencies between communication network security, power system data collection, and industrial hardware, it is important to enable communication capabilities with real-time power system simulation. In this paper, we present the integration of new functionality of a power systems dynamic simulation package into our cyber-physical power system testbed that supports real-time power system data transfer using DNP3, demonstrated with an industrial real-time automation controller (RTAC). The usage and configuration of DNP3 with real-world equipment in to achieve power system monitoring and control of a large-scale synthetic electric grid via this DNP3 communication is presented. Then, an exemplar of DNP3 data collection and control is achieved in software and hardware using the 2000-bus Texas synthetic grid.
2018-02-21
Overbye, T. J., Mao, Z., Shetye, K. S., Weber, J. D..  2017.  An interactive, extensible environment for power system simulation on the PMU time frame with a cyber security application. 2017 IEEE Texas Power and Energy Conference (TPEC). :1–6.

Power system simulation environments with appropriate time-fidelity are needed to enable rapid testing of new smart grid technologies and for coupled simulations of the underlying cyber infrastructure. This paper presents such an environment which operates with power system models in the PMU time frame, including data visualization and interactive control action capabilities. The flexible and extensible capabilities are demonstrated by interfacing with a cyber infrastructure simulation.