Visible to the public Biblio

Filters: Keyword is BPMN  [Clear All Filters]
2018-06-11
Maines, C. L., Zhou, B., Tang, S., Shi, Q..  2017.  Towards a Framework for the Extension and Visualisation of Cyber Security Requirements in Modelling Languages. 2017 10th International Conference on Developments in eSystems Engineering (DeSE). :71–76.
Every so often papers are published presenting a new extension for modelling cyber security requirements in Business Process Model and Notation (BPMN). The frequent production of new extensions by experts belies the need for a richer and more usable representation of security requirements in BPMN processes. In this paper, we present our work considering an analysis of existing extensions and identify the notational issues present within each of them. We discuss how there is yet no single extension which represents a comprehensive range of cyber security concepts. Consequently, there is no adequate solution for accurately specifying cyber security requirements within BPMN. In order to address this, we propose a new framework that can be used to extend, visualise and verify cyber security requirements in not only BPMN, but any other existing modelling language. The framework comprises of the three core roles necessary for the successful development of a security extension. With each of these being further subdivided into the respective components each role must complete.
2018-02-27
Ramadan, Q., Salnitriy, M., Strüber, D., Jürjens, J., Giorgini, P..  2017.  From Secure Business Process Modeling to Design-Level Security Verification. 2017 ACM/IEEE 20th International Conference on Model Driven Engineering Languages and Systems (MODELS). :123–133.

Tracing and integrating security requirements throughout the development process is a key challenge in security engineering. In socio-technical systems, security requirements for the organizational and technical aspects of a system are currently dealt with separately, giving rise to substantial misconceptions and errors. In this paper, we present a model-based security engineering framework for supporting the system design on the organizational and technical level. The key idea is to allow the involved experts to specify security requirements in the languages they are familiar with: business analysts use BPMN for procedural system descriptions; system developers use UML to design and implement the system architecture. Security requirements are captured via the language extensions SecBPMN2 and UMLsec. We provide a model transformation to bridge the conceptual gap between SecBPMN2 and UMLsec. Using UMLsec policies, various security properties of the resulting architecture can be verified. In a case study featuring an air traffic management system, we show how our framework can be practically applied.