Visible to the public Biblio

Filters: Keyword is infrared imaging  [Clear All Filters]
2021-01-11
Gautam, A., Singh, S..  2020.  A Comparative Analysis of Deep Learning based Super-Resolution Techniques for Thermal Videos. 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT). :919—925.

Video streams acquired from thermal cameras are proven to be beneficial in diverse number of fields including military, healthcare, law enforcement, and security. Despite the hype, thermal imaging is increasingly affected by poor resolution, where it has expensive optical sensors and inability to attain optical precision. In recent years, deep learning based super-resolution algorithms are developed to enhance the video frame resolution at high accuracy. This paper presents a comparative analysis of super resolution (SR) techniques based on deep neural networks (DNN) that are applied on thermal video dataset. SRCNN, EDSR, Auto-encoder, and SRGAN are also discussed and investigated. Further the results on benchmark thermal datasets including FLIR, OSU thermal pedestrian database and OSU color thermal database are evaluated and analyzed. Based on the experimental results, it is concluded that, SRGAN has delivered a superior performance on thermal frames when compared to other techniques and improvements, which has the ability to provide state-of-the art performance in real time operations.

2020-08-28
Karaküçük, Ahmet, Dirik, A. Emir.  2019.  Source Device Attribution of Thermal Images Captured with Handheld IR Cameras. 2019 11th International Conference on Electrical and Electronics Engineering (ELECO). :547—551.

Source camera attribution of digital images has been a hot research topic in digital forensics literature. However, the thermal cameras and the radiometric data they generate stood as a nascent topic, as such devices are expensive and tailored for specific use-cases - not adapted by the masses. This has changed dramatically, with the low-cost, pluggable thermal-camera add-ons to smartphones and similar low-cost pocket-size thermal cameras introduced to consumers recently, which enabled the use of thermal imaging devices for the masses. In this paper, we are going to investigate the use of an established source device attribution method on radiometric data produced with a consumer-level, low-cost handheld thermal camera. The results we represent in this paper are promising and show that it is quite possible to attribute thermal images with their source camera.

2020-06-15
ALshukri, Dawoud, R, Vidhya Lavanya, P, Sumesh E, Krishnan, Pooja.  2019.  Intelligent Border Security Intrusion Detection using IoT and Embedded systems. 2019 4th MEC International Conference on Big Data and Smart City (ICBDSC). :1–3.
Border areas are generally considered as places where great deal of violence, intrusion and cohesion between several parties happens. This often led to danger for the life of employees, soldiers and common man working or living in border areas. Further geographical conditions like mountains, snow, forest, deserts, harsh weather and water bodies often lead to difficult access and monitoring of border areas. Proposed system uses thermal imaging camera (FLIR) for detection of various objects and infiltrators. FLIR is assigned an IP address and connected through local network to the control center. Software code captures video and subsequently the intrusion detection. A motor controlled spotlight with infrared and laser gun is used to illuminate under various conditions at the site. System also integrates sound sensor to detect specific sounds and motion sensors to sense suspicious movements. Based on the decision, a buzzer and electric current through fence for further protection can be initiated. Sensors are be integrated through IoT for an efficient control of large border area and connectivity between sites.
2019-03-15
Cozzi, M., Galliere, J., Maurine, P..  2018.  Exploiting Phase Information in Thermal Scans for Stealthy Trojan Detection. 2018 21st Euromicro Conference on Digital System Design (DSD). :573-576.

Infrared thermography has been recognized for its ability to investigate integrated circuits in a non destructive way. Coupled to lock-in correlation it has proven efficient in detecting thermal hot spots. Most of the state of the Art measurement systems are based on amplitude analysis. In this paper we propose to investigate weak thermal hot spots using the phase of infrared signals. We demonstrate that phase analysis is a formidable alternative to amplitude to detect small heat signatures. Finally, we apply our measurement platform and its detection method to the identification of stealthy hardware Trojans.

2018-04-11
Shen, G., Tang, Y., Li, S., Chen, J., Yang, B..  2017.  A General Framework of Hardware Trojan Detection: Two-Level Temperature Difference Based Thermal Map Analysis. 2017 11th IEEE International Conference on Anti-Counterfeiting, Security, and Identification (ASID). :172–178.

With the globalization of integrated circuit design and manufacturing, Hardware Trojan have posed serious threats to the security of commercial chips. In this paper, we propose the framework of two-level temperature difference based thermal map analysis detection method. In our proposed method, thermal maps of an operating chip during a period are captured, and they are differentiated with the thermal maps of a golden model. Then every pixel's differential temperature of differential thermal maps is extracted and compared with other pixel's. To mitigate the Gaussian white noise and to differentiate the information of Hardware Trojan from the information of normal circuits, Kalman filter algorithm is involved. In our experiment, FPGAs configured with equivalent circuits are utilized to simulate the real chips to validate our proposed approach. The experimental result reveals that our proposed framework can detect Hardware Trojan whose power proportion magnitude is 10''3.

2018-02-27
Qiao, Z., Cheng, L., Zhang, S., Yang, L., Guo, C..  2017.  Detection of Composite Insulators Inner Defects Based on Flash Thermography. 2017 1st International Conference on Electrical Materials and Power Equipment (ICEMPE). :359–363.

Usually, the air gap will appear inside the composite insulators and it will lead to serious accident. In order to detect these internal defects in composite insulators operated in the transmission lines, a new non-destructive technique has been proposed. In the study, the mathematical analysis model of the composite insulators inner defects, which is about heat diffusion, has been build. The model helps to analyze the propagation process of heat loss and judge the structure and defects under the surface. Compared with traditional detection methods and other non-destructive techniques, the technique mentioned above has many advantages. In the study, air defects of composite insulators have been made artificially. Firstly, the artificially fabricated samples are tested by flash thermography, and this method shows a good performance to figure out the structure or defects under the surface. Compared the effect of different excitation between flash and hair drier, the artificially samples have a better performance after heating by flash. So the flash excitation is better. After testing by different pollution on the surface, it can be concluded that different pollution don't have much influence on figuring out the structure or defect under the surface, only have some influence on heat diffusion. Then the defective composite insulators from work site are detected and the image of defect is clear. This new active thermography system can be detected quickly, efficiently and accurately, ignoring the influence of different pollution and other environmental restrictions. So it will have a broad prospect of figuring out the defeats and structure in composite insulators even other styles of insulators.