Visible to the public Biblio

Filters: Keyword is universally composable security framework  [Clear All Filters]
2019-12-11
Canetti, Ran, Stoughton, Alley, Varia, Mayank.  2019.  EasyUC: Using EasyCrypt to Mechanize Proofs of Universally Composable Security. 2019 IEEE 32nd Computer Security Foundations Symposium (CSF). :167–16716.

We present a methodology for using the EasyCrypt proof assistant (originally designed for mechanizing the generation of proofs of game-based security of cryptographic schemes and protocols) to mechanize proofs of security of cryptographic protocols within the universally composable (UC) security framework. This allows, for the first time, the mechanization and formal verification of the entire sequence of steps needed for proving simulation-based security in a modular way: Specifying a protocol and the desired ideal functionality; Constructing a simulator and demonstrating its validity, via reduction to hard computational problems; Invoking the universal composition operation and demonstrating that it indeed preserves security. We demonstrate our methodology on a simple example: stating and proving the security of secure message communication via a one-time pad, where the key comes from a Diffie-Hellman key-exchange, assuming ideally authenticated communication. We first put together EasyCrypt-verified proofs that: (a) the Diffie-Hellman protocol UC-realizes an ideal key-exchange functionality, assuming hardness of the Decisional Diffie-Hellman problem, and (b) one-time-pad encryption, with a key obtained using ideal key-exchange, UC-realizes an ideal secure-communication functionality. We then mechanically combine the two proofs into an EasyCrypt-verified proof that the composed protocol realizes the same ideal secure-communication functionality. Although formulating a methodology that is both sound and workable has proven to be a complex task, we are hopeful that it will prove to be the basis for mechanized UC security analyses for significantly more complex protocols and tasks.

2018-02-27
Canetti, R., Hogan, K., Malhotra, A., Varia, M..  2017.  A Universally Composable Treatment of Network Time. 2017 IEEE 30th Computer Security Foundations Symposium (CSF). :360–375.
The security of almost any real-world distributed system today depends on the participants having some "reasonably accurate" sense of current real time. Indeed, to name one example, the very authenticity of practically any communication on the Internet today hinges on the ability of the parties to accurately detect revocation of certificates, or expiration of passwords or shared keys.,,However, as recent attacks show, the standard protocols for determining time are subvertible, resulting in wide-spread security loss. Worse yet, we do not have security notions for network time protocols that (a) can be rigorously asserted, and (b) rigorously guarantee security of applications that require a sense of real time.,,We propose such notions, within the universally composable (UC) security framework. That is, we formulate ideal functionalities that capture a number of prevalent forms of time measurement within existing systems. We show how they can be realized by real-world protocols, and how they can be used to assert security of time-reliant applications - specifically, certificates with revocation and expiration times. This allows for relatively clear and modular treatment of the use of time consensus in security-sensitive systems.,,Our modeling and analysis are done within the existing UC framework, in spite of its asynchronous, event-driven nature. This allows incorporating the use of real time within the existing body of analytical work done in this framework. In particular it allows for rigorous incorporation of real time within cryptographic tools and primitives.