Visible to the public Biblio

Filters: Keyword is verification tool  [Clear All Filters]
2019-11-12
Dreier, Jannik, Hirschi, Lucca, Radomirovic, Sasa, Sasse, Ralf.  2018.  Automated Unbounded Verification of Stateful Cryptographic Protocols with Exclusive OR. 2018 IEEE 31st Computer Security Foundations Symposium (CSF). :359-373.

Exclusive-or (XOR) operations are common in cryptographic protocols, in particular in RFID protocols and electronic payment protocols. Although there are numerous applications, due to the inherent complexity of faithful models of XOR, there is only limited tool support for the verification of cryptographic protocols using XOR. The Tamarin prover is a state-of-the-art verification tool for cryptographic protocols in the symbolic model. In this paper, we improve the underlying theory and the tool to deal with an equational theory modeling XOR operations. The XOR theory can be freely combined with all equational theories previously supported, including user-defined equational theories. This makes Tamarin the first tool to support simultaneously this large set of equational theories, protocols with global mutable state, an unbounded number of sessions, and complex security properties including observational equivalence. We demonstrate the effectiveness of our approach by analyzing several protocols that rely on XOR, in particular multiple RFID-protocols, where we can identify attacks as well as provide proofs.

2018-02-28
Hess, A. V., Mödersheim, S..  2017.  Formalizing and Proving a Typing Result for Security Protocols in Isabelle/HOL. 2017 IEEE 30th Computer Security Foundations Symposium (CSF). :451–463.

There are several works on the formalization of security protocols and proofs of their security in Isabelle/HOL; there have also been tools for automatically generating such proofs. This is attractive since a proof in Isabelle gives a higher assurance of the correctness than a pen-and-paper proof or the positive output of a verification tool. However several of these works have used a typed model, where the intruder is restricted to "well-typed" attacks. There also have been several works that show that this is actually not a restriction for a large class of protocols, but all these results so far are again pen-and-paper proofs. In this work we present a formalization of such a typing result in Isabelle/HOL. We formalize a constraint-based approach that is used in the proof argument of such typing results, and prove its soundness, completeness and termination. We then formalize and prove the typing result itself in Isabelle. Finally, to illustrate the real-world feasibility, we prove that the standard Transport Layer Security (TLS) handshake satisfies the main condition of the typing result.