Visible to the public Biblio

Filters: Keyword is Dynamic Network  [Clear All Filters]
2023-07-12
Li, Fenghua, Chen, Cao, Guo, Yunchuan, Fang, Liang, Guo, Chao, Li, Zifu.  2022.  Efficiently Constructing Topology of Dynamic Networks. 2022 IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :44—51.
Accurately constructing dynamic network topology is one of the core tasks to provide on-demand security services to the ubiquitous network. Existing schemes cannot accurately construct dynamic network topologies in time. In this paper, we propose a novel scheme to construct the ubiquitous network topology. Firstly, ubiquitous network nodes are divided into three categories: terminal node, sink node, and control node. On this basis, we propose two operation primitives (i.e., addition and subtraction) and three atomic operations (i.e., intersection, union, and fusion), and design a series of algorithms to describe the network change and construct the network topology. We further use our scheme to depict the specific time-varying network topologies, including Satellite Internet and Internet of things. It demonstrates that their communication and security protection modes can be efficiently and accurately constructed on our scheme. The simulation and theoretical analysis also prove that the efficiency of our scheme, and effectively support the orchestration of protection capabilities.
2023-06-02
Singh, Hoshiyar, Balamurgan, K M.  2022.  Implementation of Privacy and Security in the Wireless Networks. 2022 International Conference on Futuristic Technologies (INCOFT). :1—6.

The amount of information that is shared regularly has increased as a direct result of the rapid development of network administrators, Web of Things-related devices, and online users. Cybercriminals constantly work to gain access to the data that is stored and transferred online in order to accomplish their objectives, whether those objectives are to sell the data on the dark web or to commit another type of crime. After conducting a thorough writing analysis of the causes and problems that arise with wireless networks’ security and privacy, it was discovered that there are a number of factors that can make the networks unpredictable, particularly those that revolve around cybercriminals’ evolving skills and the lack of significant bodies’ efforts to combat them. It was observed. Wireless networks have a built-in security flaw that renders them more defenceless against attack than their wired counterparts. Additionally, problems arise in networks with hub mobility and dynamic network geography. Additionally, inconsistent availability poses unanticipated problems, whether it is accomplished through mobility or by sporadic hub slumber. In addition, it is difficult, if not impossible, to implement recently developed security measures due to the limited resources of individual hubs. Large-scale problems that arise in relation to wireless networks and flexible processing are examined by the Wireless Correspondence Network Security and Privacy research project. A few aspects of security that are taken into consideration include confirmation, access control and approval, non-disavowal, privacy and secrecy, respectability, and inspection. Any good or service should be able to protect a client’s personal information. an approach that emphasises quality, implements strategy, and uses a poll as a research tool for IT and public sector employees. This strategy reflects a higher level of precision in IT faculties.

2019-06-10
Kumar, A., Aggarwal, A., Yadav, D..  2018.  A Multi-layered Outlier Detection Model for Resource Constraint Hierarchical MANET. 2018 5th IEEE Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON). :1–7.

For sharing resources using ad hoc communication MANET are quite effective and scalable medium. MANET is a distributed, decentralized, dynamic network with no fixed infrastructure, which are self- organized and self-managed. Achieving high security level is a major challenge in case of MANET. Layered architecture is one of the ways for handling security challenges, which enables collection and analysis of data from different security dimensions. This work proposes a novel multi-layered outlier detection algorithm using hierarchical similarity metric with hierarchical categorized data. Network performance with and without the presence of outlier is evaluated for different quality-of-service parameters like percentage of APDR and AT for small (100 to 200 nodes), medium (200 to 1000 nodes) and large (1000 to 3000 nodes) scale networks. For a network with and without outliers minimum improvements observed are 9.1 % and 0.61 % for APDR and AT respectively while the maximum improvements of 22.1 % and 104.1 %.

2019-05-01
Enoch, S. Yusuf, Hong, J. B., Kim, D. S..  2018.  Time Independent Security Analysis for Dynamic Networks Using Graphical Security Models. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :588–595.

It is technically challenging to conduct a security analysis of a dynamic network, due to the lack of methods and techniques to capture different security postures as the network changes. Graphical Security Models (e.g., Attack Graph) are used to assess the security of network systems, but it typically captures a snapshot of a network state to carry out the security analysis. To address this issue, we propose a new Graphical Security Model named Time-independent Hierarchical Attack Representation Model (Ti-HARM) that captures security of multiple network states by taking into account the time duration of each network state and the visibility of network components (e.g., hosts, edges) in each state. By incorporating the changes, we can analyse the security of dynamic networks taking into account all the threats appearing in different network states. Our experimental results show that the Ti-HARM can effectively capture and assess the security of dynamic networks which were not possible using existing graphical security models.

2018-03-05
Alkalbani, A. S., Mantoro, T..  2017.  Security Comparison between Dynamic Static WSN for 5g Networks. 2017 Second International Conference on Informatics and Computing (ICIC). :1–4.
In the recent years, Wireless Sensor Networks (WSN) and its applications have obtained considerable momentum. However, security and power limits of these networks are still important matters as security and power limits remain an important problem in WSN. This paper contributes to provide a simulation-based analysis of the energy efficiency, accuracy and path length of static and dynamic wireless sensor networks for 5G environment. Results are analyzed and discussed to show the difference between these two types of sensor networks. The static networks more accurate than dynamic networks. Data move from source to destination in shortest path in dynamic networks compared to static ones.
Alkalbani, A. S., Mantoro, T..  2017.  Security Comparison between Dynamic Static WSN for 5g Networks. 2017 Second International Conference on Informatics and Computing (ICIC). :1–4.
In the recent years, Wireless Sensor Networks (WSN) and its applications have obtained considerable momentum. However, security and power limits of these networks are still important matters as security and power limits remain an important problem in WSN. This paper contributes to provide a simulation-based analysis of the energy efficiency, accuracy and path length of static and dynamic wireless sensor networks for 5G environment. Results are analyzed and discussed to show the difference between these two types of sensor networks. The static networks more accurate than dynamic networks. Data move from source to destination in shortest path in dynamic networks compared to static ones.