Visible to the public Biblio

Filters: Keyword is automatic mapping  [Clear All Filters]
2022-02-07
Lakhdhar, Yosra, Rekhis, Slim.  2021.  Machine Learning Based Approach for the Automated Mapping of Discovered Vulnerabilities to Adversial Tactics. 2021 IEEE Security and Privacy Workshops (SPW). :309–317.
To defend networks against security attacks, cyber defenders have to identify vulnerabilities that could be exploited by an attacker and fix them. However, vulnerabilities are constantly evolving and their number is rising. In addition, the resources required (i.e., time and cost) to patch all the identified vulnerabilities and update the affected assets are not always affordable. For these reasons, the defender needs to have a set of metrics that could be used to automatically map new discovered vulnerabilities to potential attack tactics. Using such a mapping to attack tactics, will allow security solutions to better respond inline to any vulnerabilities exploitation tentatives, by selecting and prioritizing suitable response strategy. In this work, we provide a multilabel classification approach to automatically map a detected vulnerability to the MITRE Adversarial Tactics that could be used by the attacker. The proposed approach will help cyber defenders to prioritize their defense strategies, ensure a rapid and efficient investigation process, and well manage new detected vulnerabilities. We evaluate a set of machine learning algorithms (BinaryRelevance, LabelPowerset, ClassifierChains, MLKNN, BRKNN, RAkELd, NLSP, and Neural Networks) and found out that ClassifierChains with RandomForest classifier is the best method in our experiment.
2018-03-05
Ehrlich, M., Wisniewski, L., Trsek, H., Mahrenholz, D., Jasperneite, J..  2017.  Automatic Mapping of Cyber Security Requirements to Support Network Slicing in Software-Defined Networks. 2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). :1–4.
The process of digitalisation has an advanced impact on social lives, state affairs, and the industrial automation domain. Ubiquitous networks and the increased requirements in terms of Quality of Service (QoS) create the demand for future-proof network management. Therefore, new technological approaches, such as Software-Defined Networks (SDN) or the 5G Network Slicing concept, are considered. However, the important topic of cyber security has mainly been ignored in the past. Recently, this topic has gained a lot of attention due to frequently reported security related incidents, such as industrial espionage, or production system manipulations. Hence, this work proposes a concept for adding cyber security requirements to future network management paradigms. For this purpose, various security related standards and guidelines are available. However, these approaches are mainly static, require a high amount of manual efforts by experts, and need to be performed in a steady manner. Therefore, the proposed solution contains a dynamic, machine-readable, automatic, continuous, and future-proof approach to model and describe cyber security QoS requirements for the next generation network management.
Ehrlich, M., Wisniewski, L., Trsek, H., Mahrenholz, D., Jasperneite, J..  2017.  Automatic Mapping of Cyber Security Requirements to Support Network Slicing in Software-Defined Networks. 2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). :1–4.
The process of digitalisation has an advanced impact on social lives, state affairs, and the industrial automation domain. Ubiquitous networks and the increased requirements in terms of Quality of Service (QoS) create the demand for future-proof network management. Therefore, new technological approaches, such as Software-Defined Networks (SDN) or the 5G Network Slicing concept, are considered. However, the important topic of cyber security has mainly been ignored in the past. Recently, this topic has gained a lot of attention due to frequently reported security related incidents, such as industrial espionage, or production system manipulations. Hence, this work proposes a concept for adding cyber security requirements to future network management paradigms. For this purpose, various security related standards and guidelines are available. However, these approaches are mainly static, require a high amount of manual efforts by experts, and need to be performed in a steady manner. Therefore, the proposed solution contains a dynamic, machine-readable, automatic, continuous, and future-proof approach to model and describe cyber security QoS requirements for the next generation network management.