Visible to the public Biblio

Filters: Keyword is multimedia forensics  [Clear All Filters]
2022-04-25
Li, Yuezun, Zhang, Cong, Sun, Pu, Ke, Lipeng, Ju, Yan, Qi, Honggang, Lyu, Siwei.  2021.  DeepFake-o-meter: An Open Platform for DeepFake Detection. 2021 IEEE Security and Privacy Workshops (SPW). :277–281.
In recent years, the advent of deep learning-based techniques and the significant reduction in the cost of computation resulted in the feasibility of creating realistic videos of human faces, commonly known as DeepFakes. The availability of open-source tools to create DeepFakes poses as a threat to the trustworthiness of the online media. In this work, we develop an open-source online platform, known as DeepFake-o-meter, that integrates state-of-the-art DeepFake detection methods and provide a convenient interface for the users. We describe the design and function of DeepFake-o-meter in this work.
2021-04-08
Mayer, O., Stamm, M. C..  2020.  Forensic Similarity for Digital Images. IEEE Transactions on Information Forensics and Security. 15:1331—1346.
In this paper, we introduce a new digital image forensics approach called forensic similarity, which determines whether two image patches contain the same forensic trace or different forensic traces. One benefit of this approach is that prior knowledge, e.g., training samples, of a forensic trace is not required to make a forensic similarity decision on it in the future. To do this, we propose a two-part deep-learning system composed of a convolutional neural network-based feature extractor and a three-layer neural network, called the similarity network. This system maps the pairs of image patches to a score indicating whether they contain the same or different forensic traces. We evaluated the system accuracy of determining whether two image patches were captured by the same or different camera model and manipulated by the same or a different editing operation and the same or a different manipulation parameter, given a particular editing operation. Experiments demonstrate applicability to a variety of forensic traces and importantly show efficacy on “unknown” forensic traces that were not used to train the system. Experiments also show that the proposed system significantly improves upon prior art, reducing error rates by more than half. Furthermore, we demonstrated the utility of the forensic similarity approach in two practical applications: forgery detection and localization, and database consistency verification.
2019-08-12
Verdoliva, Luisa.  2018.  Deep Learning in Multimedia Forensics. Proceedings of the 6th ACM Workshop on Information Hiding and Multimedia Security. :3–3.
With the widespread diffusion of powerful media editing tools, falsifying images and videos has become easier and easier in the last few years. Fake multimedia, often used to support fake news, represents a growing menace in many fields of life, notably in politics, journalism, and the judiciary. In response to this threat, the signal processing community has produced a major research effort. A large number of methods have been proposed for source identification, forgery detection and localization, relying on the typical signal processing tools. The advent of deep learning, however, is changing the rules of the game. On one hand, new sophisticated methods based on deep learning have been proposed to accomplish manipulations that were previously unthinkable. On the other hand, deep learning provides also the analyst with new powerful forensic tools. Given a suitably large training set, deep learning architectures ensure usually a significant performance gain with respect to conventional methods, and a much higher robustness to post-processing and evasions. In this talk after reviewing the main approaches proposed in the literature to ensure media authenticity, the most promising solutions relying on Convolutional Neural Networks will be explored with special attention to realistic scenarios, such as when manipulated images and videos are spread out over social networks. In addition, an analysis of the efficacy of adversarial attacks on such methods will be presented.
2019-05-08
Richter, Timo, Escher, Stephan, Schönfeld, Dagmar, Strufe, Thorsten.  2018.  Forensic Analysis and Anonymisation of Printed Documents. Proceedings of the 6th ACM Workshop on Information Hiding and Multimedia Security. :127–138.
Contrary to popular belief, the paperless office has not yet established itself. Printer forensics is therefore still an important field today to protect the reliability of printed documents or to track criminals. An important task of this is to identify the source device of a printed document. There are many forensic approaches that try to determine the source device automatically and with commercially available recording devices. However, it is difficult to find intrinsic signatures that are robust against a variety of influences of the printing process and at the same time can identify the specific source device. In most cases, the identification rate only reaches up to the printer model. For this reason we reviewed document colour tracking dots, an extrinsic signature embedded in nearly all modern colour laser printers. We developed a refined and generic extraction algorithm, found a new tracking dot pattern and decoded pattern information. Through out we propose to reuse document colour tracking dots, in combination with passive printer forensic methods. From privacy perspective we additional investigated anonymization approaches to defeat arbitrary tracking. Finally we propose our toolkitdeda which implements the entire workflow of extracting, analysing and anonymisation of a tracking dot pattern.
2018-10-26
Barni, Mauro, Tondi, Benedetta.  2017.  Threat Models and Games for Adversarial Multimedia Forensics. Proceedings of the 2Nd International Workshop on Multimedia Forensics and Security. :11–15.

We define a number of threat models to describe the goals, the available information and the actions characterising the behaviour of a possible attacker in multimedia forensic scenarios. We distinguish between an investigative scenario, wherein the forensic analysis is used to guide the investigative action and a use-in-court scenario, wherein forensic evidence must be defended during a lawsuit. We argue that the goals and actions of the attacker in these two cases are very different, thus exposing the forensic analyst to different challenges. Distinction is also made between model-based techniques and techniques based on machine learning, showing how in the latter case the necessity of defining a proper training set enriches the set of actions available to the attacker. By leveraging on the previous analysis, we then introduce some game-theoretic models to describe the interaction between the forensic analyst and the attacker in the investigative and use-in-court scenarios.

2018-03-05
Gowda, Thamme, Hundman, Kyle, Mattmann, Chris A..  2017.  An Approach for Automatic and Large Scale Image Forensics. Proceedings of the 2Nd International Workshop on Multimedia Forensics and Security. :16–20.

This paper describes the applications of deep learning-based image recognition in the DARPA Memex program and its repository of 1.4 million weapons-related images collected from the Deep web. We develop a fast, efficient, and easily deployable framework for integrating Google's Tensorflow framework with Apache Tika for automatically performing image forensics on the Memex data. Our framework and its integration are evaluated qualitatively and quantitatively and our work suggests that automated, large-scale, and reliable image classification and forensics can be widely used and deployed in bulk analysis for answering domain-specific questions.