Visible to the public Biblio

Filters: Keyword is flow table  [Clear All Filters]
2021-09-07
Sanjeetha, R, Shastry, K.N Ajay, Chetan, H.R, Kanavalli, Anita.  2020.  Mitigating HTTP GET FLOOD DDoS Attack Using an SDN Controller. 2020 International Conference on Recent Trends on Electronics, Information, Communication Technology (RTEICT). :6–10.
DDoS attacks are pre-dominant in traditional networks, they are used to bring down the services of important servers in the network, thereby affecting its performance. One such kind of attack is HTTP GET Flood DDoS attack in which a lot of HTTP GET request messages are sent to the victim web server, overwhelming its resources and bringing down its services to the legitimate clients. The solution to such attacks in traditional networks is usually implemented at the servers, but this consumes its resources which could otherwise be used to process genuine client requests. Software Defined Network (SDN) is a new network architecture that helps to deal with these attacks in a different way. In SDN the mitigation can be done using the controller without burdening the server. In this paper, we first show how an HTTP GET Flood DDoS attack can be performed on the webserver in an SDN environment and then propose a solution to mitigate the same with the help of the SDN controller. At the server, the attack is detected by checking the number of requests arriving to the web server for a certain period of time, if the number of request is greater than a particular threshold then the hosts generating such attacks will be blocked for the attack duration.
2018-03-05
Fan, Z., Wu, H., Xu, J., Tang, Y..  2017.  An Optimization Algorithm for Spatial Information Network Self-Healing Based on Software Defined Network. 2017 12th International Conference on Computer Science and Education (ICCSE). :369–374.

Spatial information network is an important part of the integrated space-terrestrial information network, its bearer services are becoming increasingly complex, and real-time requirements are also rising. Due to the structural vulnerability of the spatial information network and the dynamics of the network, this poses a serious challenge to how to ensure reliable and stable data transmission. The structural vulnerability of the spatial information network and the dynamics of the network brings a serious challenge of ensuring reliable and stable data transmission. Software Defined Networking (SDN), as a new network architecture, not only can quickly adapt to new business, but also make network reconfiguration more intelligent. In this paper, SDN is used to design the spatial information network architecture. An optimization algorithm for network self-healing based on SDN is proposed to solve the failure of switching node. With the guarantee of Quality of Service (QoS) requirement, the link is updated with the least link to realize the fast network reconfiguration and recovery. The simulation results show that the algorithm proposed in this paper can effectively reduce the delay caused by fault recovery.