Visible to the public Biblio

Filters: Keyword is return on investment  [Clear All Filters]
2020-03-09
Onwubiko, Cyril, Onwubiko, Austine.  2019.  Cyber KPI for Return on Security Investment. 2019 International Conference on Cyber Situational Awareness, Data Analytics And Assessment (Cyber SA). :1–8.

Cyber security return on investment (RoI) or return on security investment (RoSI) is extremely challenging to measure. This is partly because it is difficult to measure the actual cost of a cyber security incident or cyber security proceeds. This is further complicated by the fact that there are no consensus metrics that every organisation agrees to, and even among cyber subject matter experts, there are no set of agreed parameters or metric upon which cyber security benefits or rewards can be assessed against. One approach to demonstrating return on security investment is by producing cyber security reports of certain key performance indicators (KPI) and metrics, such as number of cyber incidents detected, number of cyber-attacks or terrorist attacks that were foiled, or ongoing monitoring capabilities. These are some of the demonstratable and empirical metrics that could be used to measure RoSI. In this abstract paper, we investigate some of the cyber KPIs and metrics to be considered for cyber dashboard and reporting for RoSI.

2018-09-05
Wang, J., Shi, D., Li, Y., Chen, J., Duan, X..  2017.  Realistic measurement protection schemes against false data injection attacks on state estimators. 2017 IEEE Power Energy Society General Meeting. :1–5.
False data injection attacks (FDIA) on state estimators are a kind of imminent cyber-physical security issue. Fortunately, it has been proved that if a set of measurements is strategically selected and protected, no FDIA will remain undetectable. In this paper, the metric Return on Investment (ROI) is introduced to evaluate the overall returns of the alternative measurement protection schemes (MPS). By setting maximum total ROI as the optimization objective, the previously ignored cost-benefit issue is taken into account to derive a realistic MPS for power utilities. The optimization problem is transformed into the Steiner tree problem in graph theory, where a tree pruning based algorithm is used to reduce the computational complexity and find a quasi-optimal solution with acceptable approximations. The correctness and efficiency of the algorithm are verified by case studies.
2018-03-05
Mfula, H., Nurminen, J. K..  2017.  Adaptive Root Cause Analysis for Self-Healing in 5G Networks. 2017 International Conference on High Performance Computing Simulation (HPCS). :136–143.

Root cause analysis (RCA) is a common and recurring task performed by operators of cellular networks. It is done mainly to keep customers satisfied with the quality of offered services and to maximize return on investment (ROI) by minimizing and where possible eliminating the root causes of faults in cellular networks. Currently, the actual detection and diagnosis of faults or potential faults is still a manual and slow process often carried out by network experts who manually analyze and correlate various pieces of network data such as, alarms, call traces, configuration management (CM) and key performance indicator (KPI) data in order to come up with the most probable root cause of a given network fault. In this paper, we propose an automated fault detection and diagnosis solution called adaptive root cause analysis (ARCA). The solution uses measurements and other network data together with Bayesian network theory to perform automated evidence based RCA. Compared to the current common practice, our solution is faster due to automation of the entire RCA process. The solution is also cheaper because it needs fewer or no personnel in order to operate and it improves efficiency through domain knowledge reuse during adaptive learning. As it uses a probabilistic Bayesian classifier, it can work with incomplete data and it can handle large datasets with complex probability combinations. Experimental results from stratified synthesized data affirmatively validate the feasibility of using such a solution as a key part of self-healing (SH) especially in emerging self-organizing network (SON) based solutions in LTE Advanced (LTE-A) and 5G.