Visible to the public Biblio

Filters: Keyword is HPKP  [Clear All Filters]
2020-04-17
Wang, Congli, Lin, Jingqiang, Li, Bingyu, Li, Qi, Wang, Qiongxiao, Zhang, Xiaokun.  2019.  Analyzing the Browser Security Warnings on HTTPS Errors. ICC 2019 - 2019 IEEE International Conference on Communications (ICC). :1—6.
HTTPS provides authentication, data confidentiality, and integrity for secure web applications in the Internet. In order to establish secure connections with the target website but not a man-in-the-middle or impersonation attacker, a browser shows security warnings to users, when different HTTPS errors happen (e.g., it fails to build a valid certificate chain, or the certificate subject does not match the domain visited). Each browser implements its own design of warnings on HTTPS errors, to balance security and usability. This paper presents a list of common HTTPS errors, and we investigate the browser behaviors on each error. Our study discloses browser defects on handling HTTPS errors in terms of cryptographic algorithm, certificate verification, name validation, HPKP, and HSTS.
2018-03-19
Amann, Johanna, Gasser, Oliver, Scheitle, Quirin, Brent, Lexi, Carle, Georg, Holz, Ralph.  2017.  Mission Accomplished?: HTTPS Security After Diginotar Proceedings of the 2017 Internet Measurement Conference. :325–340.

Driven by CA compromises and the risk of man-in-the-middle attacks, new security features have been added to TLS, HTTPS, and the web PKI over the past five years. These include Certificate Transparency (CT), for making the CA system auditable; HSTS and HPKP headers, to harden the HTTPS posture of a domain; the DNS-based extensions CAA and TLSA, for control over certificate issuance and pinning; and SCSV, for protocol downgrade protection. This paper presents the first large scale investigation of these improvements to the HTTPS ecosystem, explicitly accounting for their combined usage. In addition to collecting passive measurements at the Internet uplinks of large University networks on three continents, we perform the largest domain-based active Internet scan to date, covering 193M domains. Furthermore, we track the long-term deployment history of new TLS security features by leveraging passive observations dating back to 2012. We find that while deployment of new security features has picked up in general, only SCSV (49M domains) and CT (7M domains) have gained enough momentum to improve the overall security of HTTPS. Features with higher complexity, such as HPKP, are deployed scarcely and often incorrectly. Our empirical findings are placed in the context of risk, deployment effort, and benefit of these new technologies, and actionable steps for improvement are proposed. We cross-correlate use of features and find some techniques with significant correlation in deployment. We support reproducible research and publicly release data and code.