Visible to the public Biblio

Filters: Keyword is identity theft  [Clear All Filters]
2023-04-14
Faircloth, Christopher, Hartzell, Gavin, Callahan, Nathan, Bhunia, Suman.  2022.  A Study on Brute Force Attack on T-Mobile Leading to SIM-Hijacking and Identity-Theft. 2022 IEEE World AI IoT Congress (AIIoT). :501–507.
The 2021 T-Mobile breach conducted by John Erin Binns resulted in the theft of 54 million customers' personal data. The attacker gained entry into T-Mobile's systems through an unprotected router and used brute force techniques to access the sensitive information stored on the internal servers. The data stolen included names, addresses, Social Security Numbers, birthdays, driver's license numbers, ID information, IMEIs, and IMSIs. We analyze the data breach and how it opens the door to identity theft and many other forms of hacking such as SIM Hijacking. SIM Hijacking is a form of hacking in which bad actors can take control of a victim's phone number allowing them means to bypass additional safety measures currently in place to prevent fraud. This paper thoroughly reviews the attack methodology, impact, and attempts to provide an understanding of important measures and possible defense solutions against future attacks. We also detail other social engineering attacks that can be incurred from releasing the leaked data.
2021-03-09
Muhammad, A., Asad, M., Javed, A. R..  2020.  Robust Early Stage Botnet Detection using Machine Learning. 2020 International Conference on Cyber Warfare and Security (ICCWS). :1—6.

Among the different types of malware, botnets are rising as the most genuine risk against cybersecurity as they give a stage to criminal operations (e.g., Distributed Denial of Service (DDOS) attacks, malware dispersal, phishing, and click fraud and identity theft). Existing botnet detection techniques work only on specific botnet Command and Control (C&C) protocols and lack in providing early-stage botnet detection. In this paper, we propose an approach for early-stage botnet detection. The proposed approach first selects the optimal features using feature selection techniques. Next, it feeds these features to machine learning classifiers to evaluate the performance of the botnet detection. Experiments reveals that the proposed approach efficiently classifies normal and malicious traffic at an early stage. The proposed approach achieves the accuracy of 99%, True Positive Rate (TPR) of 0.99 %, and False Positive Rate (FPR) of 0.007 % and provide an efficient detection rate in comparison with the existing approach.

2020-10-16
Al-Nemrat, Ameer.  2018.  Identity theft on e-government/e-governance digital forensics. 2018 International Symposium on Programming and Systems (ISPS). :1—1.

In the context of the rapid technological progress, the cyber-threats become a serious challenge that requires immediate and continuous action. As cybercrime poses a permanent and increasing threat, governments, corporate and individual users of the cyber-space are constantly struggling to ensure an acceptable level of security over their assets. Maliciousness on the cyber-space spans identity theft, fraud, and system intrusions. This is due to the benefits of cyberspace-low entry barriers, user anonymity, and spatial and temporal separation between users, make it a fertile field for deception and fraud. Numerous, supervised and unsupervised, techniques have been proposed and used to identify fraudulent transactions and activities that deviate from regular patterns of behaviour. For instance, neural networks and genetic algorithms were used to detect credit card fraud in a dataset covering 13 months and 50 million credit card transactions. Unsupervised methods, such as clustering analysis, have been used to identify financial fraud or to filter fake online product reviews and ratings on e-commerce websites. Blockchain technology has demonstrated its feasibility and relevance in e-commerce. Its use is now being extended to new areas, related to electronic government. The technology appears to be the most appropriate in areas that require storage and processing of large amounts of protected data. The question is what can blockchain technology do and not do to fight malicious online activity?

2020-04-03
Liau, David, Zaeem, Razieh Nokhbeh, Barber, K. Suzanne.  2019.  Evaluation Framework for Future Privacy Protection Systems: A Dynamic Identity Ecosystem Approach. 2019 17th International Conference on Privacy, Security and Trust (PST). :1—3.
In this paper, we leverage previous work in the Identity Ecosystem, a Bayesian network mathematical representation of a person's identity, to create a framework to evaluate identity protection systems. Information dynamic is considered and a protection game is formed given that the owner and the attacker both gain some level of control over the status of other PII within the dynamic Identity Ecosystem. We present a policy iteration algorithm to solve the optimal policy for the game and discuss its convergence. Finally, an evaluation and comparison of identity protection strategies is provided given that an optimal policy is used against different protection policies. This study is aimed to understand the evolutionary process of identity theft and provide a framework for evaluating different identity protection strategies and future privacy protection system.
2020-01-21
Rana, Rima, Zaeem, Razieh Nokhbeh, Barber, K. Suzanne.  2019.  An Assessment of Blockchain Identity Solutions: Minimizing Risk and Liability of Authentication. 2019 IEEE/WIC/ACM International Conference on Web Intelligence (WI). :26–33.
Personally Identifiable Information (PII) is often used to perform authentication and acts as a gateway to personal and organizational information. One weak link in the architecture of identity management services is sufficient to cause exposure and risk identity. Recently, we have witnessed a shift in identity management solutions with the growth of blockchain. Blockchain-the decentralized ledger system-provides a unique answer addressing security and privacy with its embedded immutability. In a blockchain-based identity solution, the user is given the control of his/her identity by storing personal information on his/her device and having the choice of identity verification document used later to create blockchain attestations. Yet, the blockchain technology alone is not enough to produce a better identity solution. The user cannot make informed decisions as to which identity verification document to choose if he/she is not presented with tangible guidelines. In the absence of scientifically created practical guidelines, these solutions and the choices they offer may become overwhelming and even defeat the purpose of providing a more secure identity solution.We analyze different PII options given to users for authentication on current blockchain-based solutions. Based on our Identity Ecosystem model, we evaluate these options and their risk and liability of exposure. Powered by real world data of about 6,000 identity theft and fraud stories, our model recommends some authentication choices and discourages others. Our work paves the way for a truly effective identity solution based on blockchain by helping users make informed decisions and motivating blockchain identity solution providers to introduce better options to their users.
Huang, Jiaju, Klee, Bryan, Schuckers, Daniel, Hou, Daqing, Schuckers, Stephanie.  2019.  Removing Personally Identifiable Information from Shared Dataset for Keystroke Authentication Research. 2019 IEEE 5th International Conference on Identity, Security, and Behavior Analysis (ISBA). :1–7.

Research on keystroke dynamics has the good potential to offer continuous authentication that complements conventional authentication methods in combating insider threats and identity theft before more harm can be done to the genuine users. Unfortunately, the large amount of data required by free-text keystroke authentication often contain personally identifiable information, or PII, and personally sensitive information, such as a user's first name and last name, username and password for an account, bank card numbers, and social security numbers. As a result, there are privacy risks associated with keystroke data that must be mitigated before they are shared with other researchers. We conduct a systematic study to remove PII's from a recent large keystroke dataset. We find substantial amounts of PII's from the dataset, including names, usernames and passwords, social security numbers, and bank card numbers, which, if leaked, may lead to various harms to the user, including personal embarrassment, blackmails, financial loss, and identity theft. We thoroughly evaluate the effectiveness of our detection program for each kind of PII. We demonstrate that our PII detection program can achieve near perfect recall at the expense of losing some useful information (lower precision). Finally, we demonstrate that the removal of PII's from the original dataset has only negligible impact on the detection error tradeoff of the free-text authentication algorithm by Gunetti and Picardi. We hope that this experience report will be useful in informing the design of privacy removal in future keystroke dynamics based user authentication systems.

2019-11-26
Baykara, Muhammet, Gürel, Zahit Ziya.  2018.  Detection of Phishing Attacks. 2018 6th International Symposium on Digital Forensic and Security (ISDFS). :1-5.

Phishing is a form of cybercrime where an attacker imitates a real person / institution by promoting them as an official person or entity through e-mail or other communication mediums. In this type of cyber attack, the attacker sends malicious links or attachments through phishing e-mails that can perform various functions, including capturing the login credentials or account information of the victim. These e-mails harm victims because of money loss and identity theft. In this study, a software called "Anti Phishing Simulator'' was developed, giving information about the detection problem of phishing and how to detect phishing emails. With this software, phishing and spam mails are detected by examining mail contents. Classification of spam words added to the database by Bayesian algorithm is provided.

2018-02-15
Ramatsakane, K. I., Leung, W. S..  2017.  Pick location security: Seamless integrated multi-factor authentication. 2017 IST-Africa Week Conference (IST-Africa). :1–10.

Authentication is one of the key aspects of securing applications and systems alike. While in most existing systems this is achieved using usernames and passwords it has been continuously shown that this authentication method is not secure. Studies that have been conducted have shown that these systems have vulnerabilities which lead to cases of impersonation and identity theft thus there is need to improve such systems to protect sensitive data. In this research, we explore the combination of the user's location together with traditional usernames and passwords as a multi factor authentication system to make authentication more secure. The idea involves comparing a user's mobile device location with that of the browser and comparing the device's Bluetooth key with the key used during registration. We believe by leveraging existing technologies such as Bluetooth and GPS we can reduce implementation costs whilst improving security.

Patel, P., Kannoorpatti, K., Shanmugam, B., Azam, S., Yeo, K. C..  2017.  A theoretical review of social media usage by cyber-criminals. 2017 International Conference on Computer Communication and Informatics (ICCCI). :1–6.

Social media plays an integral part in individual's everyday lives as well as for companies. Social media brings numerous benefits in people's lives such as to keep in touch with close ones and specially with relatives who are overseas, to make new friends, buy products, share information and much more. Unfortunately, several threats also accompany the countless advantages of social media. The rapid growth of the online social networking sites provides more scope for criminals and cyber-criminals to carry out their illegal activities. Hackers have found different ways of exploiting these platform for their malicious gains. This research englobes some of the common threats on social media such as spam, malware, Trojan horse, cross-site scripting, industry espionage, cyber-bullying, cyber-stalking, social engineering attacks. The main purpose of the study to elaborates on phishing, malware and click-jacking attacks. The main purpose of the research, there is no particular research available on the forensic investigation for Facebook. There is no particular forensic investigation methodology and forensic tools available which can follow on the Facebook. There are several tools available to extract digital data but it's not properly tested for Facebook. Forensics investigation tool is used to extract evidence to determine what, when, where, who is responsible. This information is required to ensure that the sufficient evidence to take legal action against criminals.

2017-03-07
Dehghanniri, H., Letier, E., Borrion, H..  2015.  Improving security decision under uncertainty: A multidisciplinary approach. 2015 International Conference on Cyber Situational Awareness, Data Analytics and Assessment (CyberSA). :1–7.

Security decision-making is a critical task in tackling security threats affecting a system or process. It often involves selecting a suitable resolution action to tackle an identified security risk. To support this selection process, decision-makers should be able to evaluate and compare available decision options. This article introduces a modelling language that can be used to represent the effects of resolution actions on the stakeholders' goals, the crime process, and the attacker. In order to reach this aim, we develop a multidisciplinary framework that combines existing knowledge from the fields of software engineering, crime science, risk assessment, and quantitative decision analysis. The framework is illustrated through an application to a case of identity theft.

2015-04-30
Algarni, A., Yue Xu, Chan, T..  2014.  Social Engineering in Social Networking Sites: The Art of Impersonation. Services Computing (SCC), 2014 IEEE International Conference on. :797-804.

Social networking sites (SNSs), with their large number of users and large information base, seem to be the perfect breeding ground for exploiting the vulnerabilities of people, who are considered the weakest link in security. Deceiving, persuading, or influencing people to provide information or to perform an action that will benefit the attacker is known as "social engineering." Fraudulent and deceptive people use social engineering traps and tactics through SNSs to trick users into obeying them, accepting threats, and falling victim to various crimes such as phishing, sexual abuse, financial abuse, identity theft, and physical crime. Although organizations, researchers, and practitioners recognize the serious risks of social engineering, there is a severe lack of understanding and control of such threats. This may be partly due to the complexity of human behaviors in approaching, accepting, and failing to recognize social engineering tricks. This research aims to investigate the impact of source characteristics on users' susceptibility to social engineering victimization in SNSs, particularly Facebook. Using grounded theory method, we develop a model that explains what and how source characteristics influence Facebook users to judge the attacker as credible.