Biblio
Because the Internet makes human lives easier, many devices are connected to the Internet daily. The private data of individuals and large companies, including health-related data, user bank accounts, and military and manufacturing data, are increasingly accessible via the Internet. Because almost all data is now accessible through the Internet, protecting these valuable assets has become a major concern. The goal of cyber security is to protect such assets from unauthorized use. Attackers use automated tools and manual techniques to penetrate systems by exploiting existing vulnerabilities and software bugs. To provide good enough security; attack methodologies, vulnerability concepts and defence strategies should be thoroughly investigated. The main purpose of this study is to show that the patches released for existing vulnerabilities at the operating system (OS) level and in software programs does not completely prevent cyber-attack. Instead, producing specific patches for each company and fixing software bugs by being aware of the software running on each specific system can provide a better result. This study also demonstrates that firewalls, antivirus software, Windows Defender and other prevention techniques are not sufficient to prevent attacks. Instead, this study examines different aspects of penetration testing to determine vulnerable applications and hosts using the Nmap and Metasploit frameworks. For a test case, a virtualized system is used that includes different versions of Windows and Linux OS.
The 6L0WPAN adaptation layer is widely used in many Internet of Things (IoT) and vehicular networking applications. The current IoT framework [1], which introduced 6LoWPAN to the TCP/IP model, does not specif the implementation for managing its received-fragments buffer. This paper looks into the effect of current implementations of buffer management strategies at 6LoWPAN's response in case of fragmentation-based, buffer reservation Denial of Service (DoS) attacks. The Packet Drop Rate (PDR) is used to analyze how successful the attacker is for each management technique. Our investigation uses different defence strategies, which include our implementation of the Split Buffer mechanism [2] and a modified version of this mechanism that we devise in this paper as well. In particular, we introduce dynamic calculation for the average time between consecutive fragments and the use of a list of previously dropped packets tags. NS3 is used to simulate all the implementations. Our results show that using a ``slotted'' buffer would enhance 6LoWPAN's response against these attacks. The simulations also provide an in-depth look at using scoring systems to manage buffer cleanups.