Biblio
Social networking sites such as Flickr, YouTube, Facebook, etc. contain huge amount of user contributed data for a variety of real-world events. We describe an unsupervised approach to the problem of automatically detecting subgroups of people holding similar tastes or either taste. Item or taste tags play an important role in detecting group or subgroup, if two or more persons share the same opinion on the item or taste, they tend to use similar content. We consider the latter to be an implicit attitude. In this paper, we have investigated the impact of implicit and explicit attitude in two genres of social media discussion data, more formal wikipedia discussions and a debate discussion forum that is much more informal. Experimental results strongly suggest that implicit attitude is an important complement for explicit attitudes (expressed via sentiment) and it can improve the sub-group detection performance independent of genre. Here, we have proposed taste-based group, which can enhance the quality of service.
Revolution in the field of technology leads to the development of cloud computing which delivers on-demand and easy access to the large shared pools of online stored data, softwares and applications. It has changed the way of utilizing the IT resources but at the compromised cost of security breaches as well such as phishing attacks, impersonation, lack of confidentiality and integrity. Thus this research work deals with the core problem of providing absolute security to the mobile consumers of public cloud to improve the mobility of user's, accessing data stored on public cloud securely using tokens without depending upon the third party to generate them. This paper presents the approach of simplifying the process of authenticating and authorizing the mobile user's by implementing middleware-centric framework called MiLAMob model with the huge online data storage system i.e. HDFS. It allows the consumer's to access the data from HDFS via mobiles or through the social networking sites eg. facebook, gmail, yahoo etc using OAuth 2.0 protocol. For authentication, the tokens are generated using one-time password generation technique and then encrypting them using AES method. By implementing the flexible user based policies and standards, this model improves the authorization process.
Social networking sites (SNSs), with their large number of users and large information base, seem to be the perfect breeding ground for exploiting the vulnerabilities of people, who are considered the weakest link in security. Deceiving, persuading, or influencing people to provide information or to perform an action that will benefit the attacker is known as "social engineering." Fraudulent and deceptive people use social engineering traps and tactics through SNSs to trick users into obeying them, accepting threats, and falling victim to various crimes such as phishing, sexual abuse, financial abuse, identity theft, and physical crime. Although organizations, researchers, and practitioners recognize the serious risks of social engineering, there is a severe lack of understanding and control of such threats. This may be partly due to the complexity of human behaviors in approaching, accepting, and failing to recognize social engineering tricks. This research aims to investigate the impact of source characteristics on users' susceptibility to social engineering victimization in SNSs, particularly Facebook. Using grounded theory method, we develop a model that explains what and how source characteristics influence Facebook users to judge the attacker as credible.