Biblio
Human computer operations such as writing documents and playing games have become popular in our daily lives. These activities (especially if identified in a non-intrusive manner) can be used to facilitate context-aware services. In this paper, we propose to recognize human computer operations through keystroke sensing with a smartphone. Specifically, we first utilize the microphone embedded in a smartphone to sense the input audio from a computer keyboard. We then identify keystrokes using fingerprint identification techniques. The determined keystrokes are then corrected with a word recognition procedure, which utilizes the relations of adjacent letters in a word. Finally, by fusing both semantic and acoustic features, a classification model is constructed to recognize four typical human computer operations: 1) chatting; 2) coding; 3) writing documents; and 4) playing games. We recruited 15 volunteers to complete these operations, and evaluated the proposed approach from multiple aspects in realistic environments. Experimental results validated the effectiveness of our approach.
Edge computing can potentially play a crucial role in enabling user authentication and monitoring through context-aware biometrics in military/battlefield applications. For example, in Internet of Military Things (IoMT) or Internet of Battlefield Things (IoBT),an increasing number of ubiquitous sensing and computing devices worn by military personnel and embedded within military equipment (combat suit, instrumented helmets, weapon systems, etc.) are capable of acquiring a variety of static and dynamic biometrics (e.g., face, iris, periocular, fingerprints, heart-rate, gait, gestures, and facial expressions). Such devices may also be capable of collecting operational context data. These data collectively can be used to perform context-adaptive authentication in-the-wild and continuous monitoring of soldier's psychophysical condition in a dedicated edge computing architecture.
Internet of Things (IoT) devices are resource constrained devices in terms of power, memory, bandwidth, and processing. On the other hand, multicast communication is considered more efficient in group oriented applications compared to unicast communication as transmission takes place using fewer resources. That is why many of IoT applications rely on multicast in their transmission. This multicast traffic need to be secured specially for critical applications involving actuators control. Securing multicast traffic by itself is cumbersome as it requires an efficient and scalable Group Key Management (GKM) protocol. In case of IoT, the situation is more difficult because of the dynamic nature of IoT scenarios. This paper introduces a solution based on using context aware security server accompanied with a group of key servers to efficiently distribute group encryption keys to IoT devices in order to secure the multicast sessions. The proposed solution is evaluated relative to the Logical Key Hierarchy (LKH) protocol. The comparison shows that the proposed scheme efficiently reduces the load on the key servers. Moreover, the key storage cost on both members and key servers is reduced.