Visible to the public Biblio

Filters: Keyword is actuator networks  [Clear All Filters]
2020-11-16
Januário, F., Cardoso, A., Gil, P..  2018.  Multi-Agent Framework for Resilience Enhancement over a WSAN. 2018 15th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON). :110–113.
Advances on the integration of wireless sensor and actuator networks, as a whole, have contribute to the greater reconfigurability of systems and lower installation costs with application to supervision of networked control systems. This integration, however, increases some vulnerabilities associated with the physical world and also with the cyber and security world. This trend makes the wireless nodes one of the most vulnerable component of these kind of systems, which can have a major impact on the overall performance of the networked control system. This paper presents an architecture relying on a hierarchical multi-agent system for resilience enhancement, with focus on wireless sensor and actuator networks. The proposed framework was evaluated on an IPv6 test-bed comprising several distributed devices, where performance and communication links health are analyzed. The relevance of the proposed approach is demonstrated by results collected from the test-bed.
2018-03-19
Aglargoz, A., Bierig, A., Reinhardt, A..  2017.  Dynamic Reconfigurability of Wireless Sensor and Actuator Networks in Aircraft. 2017 IEEE International Conference on Wireless for Space and Extreme Environments (WiSEE). :1–6.

The wireless spectrum is a scarce resource, and the number of wireless terminals is constantly growing. One way to mitigate this strong constraint for wireless traffic is the use of dynamic mechanisms to utilize the spectrum, such as cognitive and software-defined radios. This is especially important for the upcoming wireless sensor and actuator networks in aircraft, where real-time guarantees play an important role in the network. Future wireless networks in aircraft need to be scalable, cater to the specific requirements of avionics (e.g., standardization and certification), and provide interoperability with existing technologies. In this paper, we demonstrate that dynamic network reconfigurability is a solution to the aforementioned challenges. We supplement this claim by surveying several flexible approaches in the context of wireless sensor and actuator networks in aircraft. More specifically, we examine the concept of dynamic resource management, accomplished through more flexible transceiver hardware and by employing dedicated spectrum agents. Subsequently, we evaluate the advantages of cross-layer network architectures which overcome the fixed layering of current network stacks in an effort to provide quality of service for event-based and time-triggered traffic. Lastly, the challenges related to implementation of the aforementioned mechanisms in wireless sensor and actuator networks in aircraft are elaborated, and key requirements to future research are summarized.