Biblio
UAANET (UAV Ad hoc Network) is defined as an autonomous system made of swarm of UAVs (Unmanned Aerial Vehicle) and GCS (Ground Control Station). Compared to other types of MANET (Mobile Ad hoc network), UAANET have some unique features and bring several challenges. One of them is the design of routing protocol. It must be efficient for creating routes between nodes and dynamically adjusting to the rapidly changing topology. It must also be secure to protect the integrity of the network against malicious attackers. In this paper, we will present the architecture and the performance evaluation (based on both real-life experimental and emulation studies) of a secure routing protocol called SUAP (Secure UAV Ad hoc routing Protocol). SUAP ensures routing services between nodes to exchange real-time traffic and also guarantees message authentication and integrity to protect the network integrity. Additional security mechanisms were added to detect Wormhole attacks. Wormhole attacks represent a high level of risk for UAV ad hoc network and this is the reason why we choose to focus on this specific multi node attack. Through performance evaluation campaign, our results show that SUAP ensures the expected security services against different types of attacks while providing an acceptable quality of service for real-time data exchanges.
With the advancement of unmanned aerial vehicles (UAV), 3D wireless mesh networks will play a crucial role in next generation mission critical wireless networks. Along with providing coverage over difficult terrain, it provides better spectral utilization through 3D spatial reuse. However, being a wireless network, 3D meshes are vulnerable to jamming/disruptive attacks. A jammer can disrupt the communication, as well as control of the network by intelligently causing interference to a set of nodes. This paper presents a distributed mechanism of avoiding jamming attacks by means of 3D spatial filtering where adaptive beam nulling is used to keep the jammer in null region in order to bypass jamming. Kalman filter based tracking mechanism is used to estimate the most likely trajectory of the jammer from noisy observation of the jammer's position. A beam null border is determined by calculating confidence region of jammer's current and next position estimates. An optimization goal is presented to calculate optimal beam null that minimizes the number of deactivated links while maximizing the higher value of confidence for keeping the jammer inside the null. The survivability of a 3D mesh network with a mobile jammer is studied through simulation that validates an 96.65% reduction in the number of jammed nodes.
The wireless spectrum is a scarce resource, and the number of wireless terminals is constantly growing. One way to mitigate this strong constraint for wireless traffic is the use of dynamic mechanisms to utilize the spectrum, such as cognitive and software-defined radios. This is especially important for the upcoming wireless sensor and actuator networks in aircraft, where real-time guarantees play an important role in the network. Future wireless networks in aircraft need to be scalable, cater to the specific requirements of avionics (e.g., standardization and certification), and provide interoperability with existing technologies. In this paper, we demonstrate that dynamic network reconfigurability is a solution to the aforementioned challenges. We supplement this claim by surveying several flexible approaches in the context of wireless sensor and actuator networks in aircraft. More specifically, we examine the concept of dynamic resource management, accomplished through more flexible transceiver hardware and by employing dedicated spectrum agents. Subsequently, we evaluate the advantages of cross-layer network architectures which overcome the fixed layering of current network stacks in an effort to provide quality of service for event-based and time-triggered traffic. Lastly, the challenges related to implementation of the aforementioned mechanisms in wireless sensor and actuator networks in aircraft are elaborated, and key requirements to future research are summarized.