Biblio
A key question for characterising a system's vulnerability against timing attacks is whether or not it allows an adversary to aggregate information about a secret over multiple timing measurements. Existing approaches for reasoning about this aggregate information rely on strong assumptions about the capabilities of the adversary in terms of measurement and computation, which is why they fall short in modelling, explaining, or synthesising real-world attacks against cryptosystems such as RSA or AES. In this paper we present a novel model for reasoning about information aggregation in timing attacks. The model is based on a novel abstraction of timing measurements that better captures the capabilities of real-world adversaries, and a notion of compositionality of programs that explains attacks by divide-and-conquer. Our model thus lifts important limiting assumptions made in prior work and enables us to give the first uniform explanation of high-profile timing attacks in the language of information-flow analysis.
Security of control systems have become a new and important field of research since malicious attacks on control systems indeed occurred including Stuxnet in 2011 and north eastern electrical grid black out in 2003. Attacks on sensors and/or actuators of control systems cause malfunction, instability, and even system destruction. The impact of attack may differ by which instrumentation (sensors and/or actuators) is being attacked. In particular, for control systems with multiple sensors, attack on each sensor may have different impact, i.e., attack on some sensors leads to a greater damage to the system than those for other sensors. To investigate this, we consider sensor bias injection attacks in linear control systems equipped with anomaly detector, and quantify the maximum impact of attack on sensors while the attack remains undetected. Then, we introduce a notion of sensor security index for linear dynamic systems to quantify the vulnerability under sensor attacks. Method of reducing system vulnerability is also discussed using the notion of sensor security index.