Biblio
Filters: Keyword is EMG [Clear All Filters]
Biometric User Identification by Forearm EMG Analysis. 2022 IEEE International Conference on Consumer Electronics - Taiwan. :607–608.
.
2022. The recent experience in the use of virtual reality (VR) technology has shown that users prefer Electromyography (EMG) sensor-based controllers over hand controllers. The results presented in this paper show the potential of EMG-based controllers, in particular the Myo armband, to identify a computer system user. In the first scenario, we train various classifiers with 25 keyboard typing movements for training and test with 75. The results with a 1-dimensional convolutional neural network indicate that we are able to identify the user with an accuracy of 93% by analyzing only the EMG data from the Myo armband. When we use 75 moves for training, accuracy increases to 96.45% after cross-validation.
ISSN: 2575-8284
EMG Data Collection for Multimodal Keystroke Analysis. 2022 12th International Conference on Advanced Computer Information Technologies (ACIT). :351–355.
.
2022. User authentication based on muscle tension manifested during password typing seems to be an interesting additional layer of security. It represents another way of verifying a person’s identity, for example in the context of continuous verification. In order to explore the possibilities of such authentication method, it was necessary to create a capturing software that records and stores data from EMG (electromyography) sensors, enabling a subsequent analysis of the recorded data to verify the relevance of the method. The work presented here is devoted to the design, implementation and evaluation of such a solution. The solution consists of a protocol and a software application for collecting multimodal data when typing on a keyboard. Myo armbands on both forearms are used to capture EMG and inertial data while additional modalities are collected from a keyboard and a camera. The user experience evaluation of the solution is presented, too.
ISSN: 2770-5226
Real Time EMG Noise Cancellation from ECG Signals Using Adaptive Filtering. Proceedings of the 2Nd International Conference on Computing and Wireless Communication Systems. :54:1–54:6.
.
2017. This paper presents a quantitative study of adaptive filtering to cancel the EMG artifact from ECG signals. The proposed adaptive algorithm operates in real time; it adjusts its coefficients simultaneously with signals acquisition minimizing a cost function, the summation of weighted least square errors (LSE). The obtained results prove the success and the effectiveness of the proposed algorithm. The best ones were obtained for the forgetting factor equals to 0.99 and the regularization parameter equals to 0.02..