Visible to the public Biblio

Filters: Keyword is spectral clustering  [Clear All Filters]
2022-06-09
Fu, Chen, Rui, Yu, Wen-mao, Liu.  2021.  Internet of Things Attack Group Identification Model Combined with Spectral Clustering. 2021 IEEE 21st International Conference on Communication Technology (ICCT). :778–782.
In order to solve the problem that the ordinary intrusion detection model cannot effectively identify the increasingly complex, continuous, multi-source and organized network attacks, this paper proposes an Internet of Things attack group identification model to identify the planned and organized attack groups. The model takes the common attack source IP, target IP, time stamp and target port as the characteristics of the attack log data to establish the identification benchmark of the attack gang behavior. The model also combines the spectral clustering algorithm to cluster different attackers with similar attack behaviors, and carries out the specific image analysis of the attack gang. In this paper, an experimental detection was carried out based on real IoT honey pot attack log data. The spectral clustering was compared with Kmeans, DBSCAN and other clustering algorithms. The experimental results shows that the contour coefficient of spectral clustering was significantly higher than that of other clustering algorithms. The recognition model based on spectral clustering proposed in this paper has a better effect, which can effectively identify the attack groups and mine the attack preferences of the groups.
2018-04-04
Rupasinghe, R. A. A., Padmasiri, D. A., Senanayake, S. G. M. P., Godaliyadda, G. M. R. I., Ekanayake, M. P. B., Wijayakulasooriya, J. V..  2017.  Dynamic clustering for event detection and anomaly identification in video surveillance. 2017 IEEE International Conference on Industrial and Information Systems (ICIIS). :1–6.

This work introduces concepts and algorithms along with a case study validating them, to enhance the event detection, pattern recognition and anomaly identification results in real life video surveillance. The motivation for the work underlies in the observation that human behavioral patterns in general continuously evolve and adapt with time, rather than being static. First, limitations in existing work with respect to this phenomena are identified. Accordingly, the notion and algorithms of Dynamic Clustering are introduced in order to overcome these drawbacks. Correspondingly, we propose the concept of maintaining two separate sets of data in parallel, namely the Normal Plane and the Anomaly Plane, to successfully achieve the task of learning continuously. The practicability of the proposed algorithms in a real life scenario is demonstrated through a case study. From the analysis presented in this work, it is evident that a more comprehensive analysis, closely following human perception can be accomplished by incorporating the proposed notions and algorithms in a video surveillance event.

2018-03-19
Hu, Xiaoyan, Xie, Shunbo.  2017.  Efficient and Robust Motion Segmentation via Adaptive Similarity Metric. Proceedings of the Computer Graphics International Conference. :34:1–34:6.

This paper introduces an efficient and robust method that segments long motion capture data into distinct behaviors. The method is unsupervised, and is fully automatic. We first apply spectral clustering on motion affinity matrix to get a rough segmentation. We combined two statistical filters to remove the noises and get a good initial guess on the cut points as well as on the number of segments. Then, we analyzed joint usage information within each rough segment and recomputed an adaptive affinity matrix for the motion. Applying spectral clustering again on this adaptive affinity matrix produced a robust and accurate segmentation compared with the ground-truth. The experiments showed that the proposed approach outperformed the available methods on the CMU Mocap database.