Biblio
More and more security and privacy issues are arising as new technologies, such as big data and cloud computing, are widely applied in nowadays. For decreasing the privacy breaches in access control system under opening and cross-domain environment. In this paper, we suggest a game and risk based access model for privacy preserving by employing Shannon information and game theory. After defining the notions of Privacy Risk and Privacy Violation Access, a high-level framework of game theoretical risk based access control is proposed. Further, we present formulas for estimating the risk value of access request and user, construct and analyze the game model of the proposed access control by using a multi-stage two player game. There exists sub-game perfect Nash equilibrium each stage in the risk based access control and it's suitable to protect the privacy by limiting the privacy violation access requests.
We introduce a novel mathematical model that treats network security as a game between cyber attackers and network administrators. The model takes the form of a zero-sum repeated game where each sub-game corresponds to a possible state of the attacker. Our formulation views state as the set of compromised edges in a graph opposed to the more traditional node-based view. This provides a more expressive model since it allows the defender to anticipate the direction of attack. Both players move independently and in continuous time allowing for the possibility of one player moving several times before the other does. This model shows that defense-in-depth is not always a rational strategy for budget constrained network administrators. Furthermore, a defender can dissuade a rational attacker from attempting to attack a network if the defense budget is sufficiently high. This means that a network administrator does not need to make their system completely free of vulnerabilities, they only to ensure the penalties for being caught outweigh the potential rewards gained.