Biblio
Air-gapped networks are isolated from the Internet, since they store and process sensitive information. It has been shown that attackers can exfiltrate data from air-gapped networks by sending acoustic signals generated by computer speakers, however this type of covert channel relies on the existence of loudspeakers in the air-gapped environment. In this paper, we present CD-LEAK - a novel acoustic covert channel that works in constrained environments where loudspeakers are not available to the attacker. Malware installed on a compromised computer can maliciously generate acoustic signals via the optical CD/DVD drives. Binary information can then be modulated over the acoustic signals and be picked up by a nearby Internet connected receiver (e.g., a workstation, hidden microphone, smartphone, laptop, etc.). We examine CD/DVD drives and discuss their acoustical characteristics. We also present signal generation and detection, and data modulation and demodulation algorithms. Based on our proposed method, we developed a transmitter and receiver for PCs and smartphones, and provide the design and implementation details. We examine the channel and evaluate it on various optical drives. We also provide a set of countermeasures against this threat - which has been overlooked.
This paper proposes a method to detect two primary means of using the Domain Name System (DNS) for malicious purposes. We develop machine learning models to detect information exfiltration from compromised machines and the establishment of command & control (C&C) servers via tunneling. We validate our approach by experiments where we successfully detect a malware used in several recent Advanced Persistent Threat (APT) attacks [1]. The novelty of our method is its robustness, simplicity, scalability, and ease of deployment in a production environment.