Visible to the public Biblio

Filters: Keyword is load flow control  [Clear All Filters]
2020-11-20
Paul, S., Padhy, N. P., Mishra, S. K., Srivastava, A. K..  2019.  UUCA: Utility-User Cooperative Algorithm for Flexible Load Scheduling in Distribution System. 2019 8th International Conference on Power Systems (ICPS). :1—6.
Demand response analysis in smart grid deployment substantiated itself as an important research area in recent few years. Two-way communication between utility and users makes peak load reduction feasible by delaying the operation of deferrable appliances. Flexible appliance rescheduling is preferred to the users compared to traditional load curtailment. Again, if users' preferences are accounted into appliance transferring process, then customers concede a little discomfort to help the utility in peak reduction. This paper presents a novel Utility-User Cooperative Algorithm (UUCA) to lower total electricity cost and gross peak demand while preserving users' privacy and preferences. Main driving force in UUCA to motivate the consumers is a new cost function for their flexible appliances. As a result, utility will experience low peak and due to electricity cost decrement, users will get reduced bill. However, to maintain privacy, the behaviors of one customer have not be revealed either to other customers or to the central utility. To justify the effectiveness, UUCA is executed separately on residential, commercial and industrial customers of a distribution grid. Harmony search optimization technique has proved itself superior compared to other heuristic search techniques to prove efficacy of UUCA.
2020-01-20
Melendez, Carlos, Diaz, Matias, Rojas, Felix, Cardenas, Roberto, Espinoza, Mauricio.  2019.  Control of a Double Fed Induction Generator based Wind Energy Conversion System equipped with a Modular Multilevel Matrix Converter. 2019 Fourteenth International Conference on Ecological Vehicles and Renewable Energies (EVER). :1–11.

During the last years, the Modular Multilevel Matrix Converter (M3C) has been investigated due to its capacity tooperate in high voltage and power levels. This converter is appropriate for Wind Energy Conversion Systems (WECSs), due to its advantages such as redundancy, high power quality, expandability and control flexibility. For Double-Fed Induction Generator (DFIG) WECSs, the M3C has advantages additional benefits, for instance, high power density in the rotor, with a more compact modular converter, and control of bidirectional reactive power flow. Therefore, this paper presents a WECS composed of a DFIG and an M3C. The modelling and control of this WECS topology are described and analyzed in this paper. Additionally, simulation results are presented to validate the effectiveness of this proposal.

2018-03-19
Soltan, S., Zussman, G..  2017.  Power Grid State Estimation after a Cyber-Physical Attack under the AC Power Flow Model. 2017 IEEE Power Energy Society General Meeting. :1–5.

In this paper, we present an algorithm for estimating the state of the power grid following a cyber-physical attack. We assume that an adversary attacks an area by: (i) disconnecting some lines within that area (failed lines), and (ii) obstructing the information from within the area to reach the control center. Given the phase angles of the buses outside the attacked area under the AC power flow model (before and after the attack), the algorithm estimates the phase angles of the buses and detects the failed lines inside the attacked area. The novelty of our approach is the transformation of the line failures detection problem, which is combinatorial in nature, to a convex optimization problem. As a result, our algorithm can detect any number of line failures in a running time that is independent of the number of failures and is solely dependent on the size of the network. To the best of our knowledge, this is the first convex relaxation for the problem of line failures detection using phase angle measurements under the AC power flow model. We evaluate the performance of our algorithm in the IEEE 118- and 300-bus systems, and show that it estimates the phase angles of the buses with less that 1% error, and can detect the line failures with 80% accuracy for single, double, and triple line failures.