Biblio
Many applications are bandwidth consuming but may tolerate longer flow completion times. Multipath protocols, such as multipath TCP (MPTCP), can offer bandwidth aggregation and resilience to link failures for such applications, and low priority congestion control (LPCC) mechanisms can make these applications yield to other time-sensitive ones. Properly combining the above two can improve the overall user experience. However, the existing LPCC mechanisms are not adequate for MPTCP. They do not take into account the characteristics of multiple network paths, and cannot ensure fairness among the same priority flows. Therefore, we propose a multipath LPCC mechanism, i.e., Dynamic Coupled Low Extra Delay Background Transport, named DC-LEDBAT. Our scheme is designed based on a standardized LPCC mechanism LEDBAT. To avoid unfairness among the same priority flows, DC-LEDBAT trades little throughput for precisely measuring the minimum delay. Moreover, to be friendly to single-path LEDBAT, our scheme leverages the correlation of the queuing delay to detect whether multiple paths go through a shared bottleneck. Then, DC-LEDBAT couples the congestion window at shared bottlenecks to control the sending rate. We implement DC-LEDBAT in a Linux kernel and experimental results show that DC-LEDBAT can not only utilize the excess bandwidth of MPTCP but also ensure fairness among the same priority flows.
This article presents a practical approach for secure key exchange exploiting reciprocity in wireless transmission. The method relies on the reciprocal channel phase to mask points of a Phase Shift Keying (PSK) constellation. Masking is achieved by adding (modulo 2π) the measured reciprocal channel phase to the PSK constellation points carrying some of the key bits. As the channel phase is uniformly distributed in [0, 2π], knowing the sum of the two phases does not disclose any information about any of its two components. To enlarge the key size over a static or slow fading channel, the Radio Frequency (RF) propagation path is perturbed to create independent realizations of multi-path fading. Prior techniques have relied on quantizing the reciprocal channel state measured at the two ends and thereby suffer from information leakage in the process of key consolidation (ensuring the two ends have access to the same key). The proposed method does not suffer from such shortcomings as raw key bits can be equipped with Forward Error Correction (FEC) without affecting the masking (zero information leakage) property. To eavesdrop a phase value shared in this manner, the Eavesdropper (Eve) would require to solve a system of linear equations defined over angles, each equation corresponding to a possible measurement by the Eve. Channel perturbation is performed such that each new channel state creates an independent channel realization for the legitimate nodes, as well as for each of Eves antennas. As a result, regardless of the Eves Signal-to-Noise Ratio (SNR) and number of antennas, Eve will always face an under-determined system of equations. On the other hand, trying to solve any such under-determined system of linear equations in terms of an unknown phase will not reveal any useful information about the actual answer, meaning that the distribution of the answer remains uniform in [0, 2π].
Physical Unclonable Functions (PUFs) are considered as an attractive low-cost security anchor. The unique features of PUFs are dependent on the Nanoscale variations introduced during the manufacturing variations. Most PUFs exhibit an unreliability problem due to aging and inherent sensitivity to the environmental conditions. As a remedy to the reliability issue, helper data algorithms are used in practice. A helper data algorithm generates and stores the helper data in the enrollment phase in a secure environment. The generated helper data are used then for error correction, which can transform the unique feature of PUFs into a reproducible key. The key can be used to encrypt secret data in the security scheme. In contrast, this work shows that the fuzzy PUFs can be used to secret important data directly by an error-tolerant protocol without the enrollment phase and error-correction algorithm. In our proposal, the secret data is locked in a vault leveraging the unique fuzzy pattern of PUF. Although the noise exists, the data can then be released only by this unique PUF. The evaluation was performed on the most prominent intrinsic PUF - DRAM PUF. The test results demonstrate that our proposal can reach an acceptable reconstruction rate in various environment. Finally, the security analysis of the new proposal is discussed.
Infrared thermography has been recognized for its ability to investigate integrated circuits in a non destructive way. Coupled to lock-in correlation it has proven efficient in detecting thermal hot spots. Most of the state of the Art measurement systems are based on amplitude analysis. In this paper we propose to investigate weak thermal hot spots using the phase of infrared signals. We demonstrate that phase analysis is a formidable alternative to amplitude to detect small heat signatures. Finally, we apply our measurement platform and its detection method to the identification of stealthy hardware Trojans.
In this paper, we present an algorithm for estimating the state of the power grid following a cyber-physical attack. We assume that an adversary attacks an area by: (i) disconnecting some lines within that area (failed lines), and (ii) obstructing the information from within the area to reach the control center. Given the phase angles of the buses outside the attacked area under the AC power flow model (before and after the attack), the algorithm estimates the phase angles of the buses and detects the failed lines inside the attacked area. The novelty of our approach is the transformation of the line failures detection problem, which is combinatorial in nature, to a convex optimization problem. As a result, our algorithm can detect any number of line failures in a running time that is independent of the number of failures and is solely dependent on the size of the network. To the best of our knowledge, this is the first convex relaxation for the problem of line failures detection using phase angle measurements under the AC power flow model. We evaluate the performance of our algorithm in the IEEE 118- and 300-bus systems, and show that it estimates the phase angles of the buses with less that 1% error, and can detect the line failures with 80% accuracy for single, double, and triple line failures.