Biblio
As Web traffics is increasing on the Internet, caching solutions for Web systems are becoming more important since they can greatly expand system scalability. An important part of a caching solution is cache replacement policy, which is responsible for selecting victim items that should be removed in order to make space for new objects. Typical replacement policies used in practice only take advantage of temporal reference locality by removing the least recently/frequently requested items from the cache. Although those policies work well in memory or filesystem cache, they are inefficient for Web systems since they do not exploit semantic relationship between Web items. This paper presents a semantic-aware caching policy that can be used in Web systems to enhance scalability. The proposed caching mechanism defines semantic distance from a web page to a set of pivot pages and use the semantic distances as a metric for choosing victims. Also, it use a function-based metric that combines access frequency and cache item size for tie-breaking. Our simulations show that out enhancements outperform traditional methods in terms of hit rate, which can be useful for websites with many small and similar-in-size web objects.
End-users in emerging markets experience poor web performance due to a combination of three factors: high server response time, limited edge bandwidth and the complexity of web pages. The absence of cloud infrastructure in developing regions and the limited bandwidth experienced by edge nodes constrain the effectiveness of conventional caching solutions for these contexts. This paper describes the design, implementation and deployment of xCache, a cloud-managed Internet caching architecture that aims to proactively profile popular web pages and maintain the liveness of popular content at software defined edge caches to enhance the cache hit rate with minimal bandwidth overhead. xCache uses a Cloud Controller that continuously analyzes active cloud-managed web pages and derives an object-group representation of web pages based on the objects of a page. Using this object-group representation, xCache computes a bandwidth-aware utility measure to derive the most valuable configuration for each edge cache. Our preliminary real-world deployment across university campuses in three developing regions demonstrates its potential compared to conventional caching by improving cache hit rates by about 15%. Our evaluations of xCache have also shown that it can be applied in conjunction with other web optimizations solutions like Shandian, and can improve page load times by more than 50%.