Visible to the public Biblio

Filters: Keyword is trust-aware  [Clear All Filters]
2020-11-23
Gwak, B., Cho, J., Lee, D., Son, H..  2018.  TARAS: Trust-Aware Role-Based Access Control System in Public Internet-of-Things. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :74–85.
Due to the proliferation of Internet-of-Things (IoT) environments, humans working with heterogeneous, smart objects in public IoT environments become more popular than ever before. This situation often requires to establish trust relationships between a user and a smart object for their secure interactions, but without the presence of prior interactions. In this work, we are interested in how a smart object can grant an access right to a human user in the absence of any prior knowledge in which some users may be malicious aiming to breach security goals of the IoT system. To solve this problem, we propose a trust-aware, role-based access control system, namely TARAS, which provides adaptive authorization to users based on dynamic trust estimation. In TARAS, for the initial trust establishment, we take a multidisciplinary approach by adopting the concept of I-sharing from psychology. The I-sharing follows the rationale that people with similar roles and traits are more likely to respond in a similar way. This theory provides a powerful tool to quickly establish trust between a smart object and a new user with no prior interactions. In addition, TARAS can adaptively filter malicious users out by revoking their access rights based on adaptive, dynamic trust estimation. Our experimental results show that the proposed TARAS mechanism can maximize system integrity in terms of correctly detecting malicious or benign users while maximizing service availability to users particularly when the system is fine-tuned based on the identified optimal setting in terms of an optimal trust threshold.
2018-03-26
Chen, K., Mao, H., Shi, X., Xu, Y., Liu, A..  2017.  Trust-Aware and Location-Based Collaborative Filtering for Web Service QoS Prediction. 2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC). 2:143–148.

The rapid development of cloud computing has resulted in the emergence of numerous web services on the Internet. Selecting a suitable cloud service is becoming a major problem for users especially non-professionals. Quality of Service (QoS) is considered to be the criterion for judging web services. There are several Collaborative Filtering (CF)-based QoS prediction methods proposed in recent years. QoS values among different users may vary largely due to the network and geographical location. Moreover, QoS data provided by untrusted users will definitely affect the prediction accuracy. However, most existing methods seldom take both facts into consideration. In this paper, we present a trust-aware and location-based approach for web service QoS prediction. A trust value for each user is evaluated before the similarity calculation and the location is taken into account in similar neighbors selecting. A series of experiments are performed based on a realworld QoS dataset including 339 service users and 5,825 services. The experimental analysis shows that the accuracy of our method is much higher than other CF-based methods.