Biblio
In a software system it is possible to quantify the amount of information that is leaked or corrupted by analysing the flows of information present in the source code. In a cyber-physical system, information flows are not only present at the digital level but also at a physical level, and they are also present to and fro the two levels. In this work, we provide a methodology to formally analyse a composite, cyber-physical system model (combining physics and control) using an information flow-theoretic approach. We use this approach to quantify the level of vulnerability of a system with respect to attackers with different capabilities. We illustrate our approach by means of a water distribution case study.
We consider the automatic verification of information flow security policies of web-based workflows, such as conference submission systems like EasyChair. Our workflow description language allows for loops, non-deterministic choice, and an unbounded number of participating agents. The information flow policies are specified in a temporal logic for hyperproperties. We show that the verification problem can be reduced to the satisfiability of a formula of first-order linear-time temporal logic, and provide decidability results for relevant classes of workflows and specifications. We report on experimental results obtained with an implementation of our approach on a series of benchmarks.