Visible to the public Biblio

Filters: Keyword is private networks  [Clear All Filters]
2020-09-11
Prokofiev, Anton O., Smirnova, Yulia S..  2019.  Counteraction against Internet of Things Botnets in Private Networks. 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :301—305.
This article focuses on problems related to detection and prevention of botnet threats in private Internet of Things (IoT) networks. Actual data about IoT botnets activity on the Internet is provided in the paper. Results of analysis of widespread botnets, as well as key characteristics of botnet behavior and activity on IoT devices are also provided. Features of private IoT networks are determined. The paper provides architectural features as well as functioning principles of software systems for botnet prevention in private networks. Recommendations for process of interaction between such system and a user are suggested. Suggestions for future development of the approach are formulated.
2020-07-06
Xiong, Leilei, Grijalva, Santiago.  2019.  N-1 RTU Cyber-Physical Security Assessment Using State Estimation. 2019 IEEE Power Energy Society General Meeting (PESGM). :1–5.
Real-time supervisory control and data acquisition (SCADA) systems use remote terminal units (RTUs) to monitor and manage the flow of power at electrical substations. As their connectivity to different utility and private networks increases, RTUs are becoming more vulnerable to cyber-attacks. Some attacks seek to access RTUs to directly control power system devices with the intent to shed load or cause equipment damage. Other attacks (such as denial-of-service) target network availability and seek to block, delay, or corrupt communications between the RTU and the control center. In the most severe case, when communications are entirely blocked, the loss of an RTU can cause the power system to become unobservable. It is important to understand how losing an RTU impacts the system state (bus voltage magnitudes and angles). The system state is determined by the state estimator and serves as the input to other critical EMS applications. There is currently no systematic approach for assessing the cyber-physical impact of losing RTUs. This paper proposes a methodology for N-1 RTU cyber-physical security assessment that could benefit power system control and operation. We demonstrate our approach on the IEEE 14-bus system as well as on a synthetic 200-bus system.
2019-12-02
Chi, Po-Wen, Wang, Ming-Hung.  2018.  A Lightweight Compound Defense Framework Against Injection Attacks in IIoT. 2018 IEEE Conference on Dependable and Secure Computing (DSC). :1–8.
Industrial Internet of Things (IIoT) is a trend of the smart industry. By collecting field data from sensors, the industry can make decisions dynamically in time for better performance. In most cases, IIoT is built on private networks and cannot be reached from the Internet. Currently, data transmission in most of IIoT network protocols is in plaintext without encryption protection. Once an attacker breaks into the field, the attacker can intercept data and injects malicious commands to field agents. In this paper, we propose a compound approach for defending command injection attacks in IIOT. First, we leverage the power of Software Defined Networking (SDN) to detect the injection attack. When the injection attack event is detected, the system owner is alarmed that someone tries to pretend a controller or a field agent to deceive the other entity. Second, we develop a lightweight authentication scheme to ensure the identity of the command sender. Command receiver can verify commands first before processing commands.
2018-03-26
d Krit, S., Haimoud, E..  2017.  Overview of Firewalls: Types and Policies: Managing Windows Embedded Firewall Programmatically. 2017 International Conference on Engineering MIS (ICEMIS). :1–7.

Due to the increasing threat of network attacks, Firewall has become crucial elements in network security, and have been widely deployed in most businesses and institutions for securing private networks. The function of a firewall is to examine each packet that passes through it and decide whether to letting them pass or halting them based on preconfigured rules and policies, so firewall now is the first defense line against cyber attacks. However most of people doesn't know how firewall works, and the most users of windows operating system doesn't know how to use the windows embedded firewall. This paper explains how firewall works, firewalls types, and all you need to know about firewall policies, then presents a novel application (QudsWall) developed by authors that manages windows embedded firewall and make it easy to use.