Visible to the public Biblio

Filters: Keyword is Radio frequency  [Clear All Filters]
2023-09-20
Dixit, Utkarsh, Bhatia, Suman, Bhatia, Pramod.  2022.  Comparison of Different Machine Learning Algorithms Based on Intrusion Detection System. 2022 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COM-IT-CON). 1:667—672.
An IDS is a system that helps in detecting any kind of doubtful activity on a computer network. It is capable of identifying suspicious activities at both the levels i.e. locally at the system level and in transit at the network level. Since, the system does not have its own dataset as a result it is inefficient in identifying unknown attacks. In order to overcome this inefficiency, we make use of ML. ML assists in analysing and categorizing attacks on diverse datasets. In this study, the efficacy of eight machine learning algorithms based on KDD CUP99 is assessed. Based on our implementation and analysis, amongst the eight Algorithms considered here, Support Vector Machine (SVM), Random Forest (RF) and Decision Tree (DT) have the highest testing accuracy of which got SVM does have the highest accuracy
2023-09-01
Sayed, Aya Nabil, Hamila, Ridha, Himeur, Yassine, Bensaali, Faycal.  2022.  Employing Information Theoretic Metrics with Data-Driven Occupancy Detection Approaches: A Comparative Analysis. 2022 5th International Conference on Signal Processing and Information Security (ICSPIS). :50—54.
Building occupancy data helps increase energy management systems’ performance, enabling lower energy use while preserving occupant comfort. The focus of this study is employing environmental data (e.g., including but not limited to temperature, humidity, carbon dioxide (CO2), etc.) to infer occupancy information. This will be achieved by exploring the application of information theory metrics with machine learning (ML) approaches to classify occupancy levels for a given dataset. Three datasets and six distinct ML algorithms were used in a comparative study to determine the best strategy for identifying occupancy patterns. It was determined that both k-nearest neighbors (kNN) and random forest (RF) identify occupancy labels with the highest overall level of accuracy, reaching 97.99% and 98.56%, respectively.
2023-07-13
Wu, Yan.  2022.  Information Security Management System for Archives Management Based on Embedded Artificial Intelligence. 2022 International Conference on Artificial Intelligence of Things and Crowdsensing (AIoTCs). :340–344.
Archival services are one of the main functions of an information security management system for archival management, and the conversion and updating of archival intelligence services is an important means to meet the increasing diversity and wisdom of the age of intelligence. The purpose of this paper is to study an information security management system for archival management based on embedded artificial intelligence. The implementation of an embedded control management system for intelligent filing cabinets is studied. Based on a configurable embedded system security model, the access control process and the functional modules of the system based on a secure call cache are analysed. Software for wireless RF communication was designed, and two remote control options were designed using CAN technology and wireless RF technology. Tests have shown that the system is easy to use, feature-rich and reliable, and can meet the needs of different users for regular control of file room management.
2023-06-30
Gupta, Rishabh, Singh, Ashutosh Kumar.  2022.  Privacy-Preserving Cloud Data Model based on Differential Approach. 2022 Second International Conference on Power, Control and Computing Technologies (ICPC2T). :1–6.
With the variety of cloud services, the cloud service provider delivers the machine learning service, which is used in many applications, including risk assessment, product recommen-dation, and image recognition. The cloud service provider initiates a protocol for the classification service to enable the data owners to request an evaluation of their data. The owners may not entirely rely on the cloud environment as the third parties manage it. However, protecting data privacy while sharing it is a significant challenge. A novel privacy-preserving model is proposed, which is based on differential privacy and machine learning approaches. The proposed model allows the various data owners for storage, sharing, and utilization in the cloud environment. The experiments are conducted on Blood transfusion service center, Phoneme, and Wilt datasets to lay down the proposed model's efficiency in accuracy, precision, recall, and Fl-score terms. The results exhibit that the proposed model specifies high accuracy, precision, recall, and Fl-score up to 97.72%, 98.04%, 97.72%, and 98.80%, respectively.
2023-04-28
Parhizgar, Nazanin, Jamshidi, Ali, Setoodeh, Peyman.  2022.  Defense Against Spectrum Sensing Data Falsification Attack in Cognitive Radio Networks using Machine Learning. 2022 30th International Conference on Electrical Engineering (ICEE). :974–979.
Cognitive radio (CR) networks are an emerging and promising technology to improve the utilization of vacant bands. In CR networks, security is a very noteworthy domain. Two threatening attacks are primary user emulation (PUE) and spectrum sensing data falsification (SSDF). A PUE attacker mimics the primary user signals to deceive the legitimate secondary users. The SSDF attacker falsifies its observations to misguide the fusion center to make a wrong decision about the status of the primary user. In this paper, we propose a scheme based on clustering the secondary users to counter SSDF attacks. Our focus is on detecting and classifying each cluster as reliable or unreliable. We introduce two different methods using an artificial neural network (ANN) for both methods and five more classifiers such as support vector machine (SVM), random forest (RF), K-nearest neighbors (KNN), logistic regression (LR), and decision tree (DR) for the second one to achieve this goal. Moreover, we consider deterministic and stochastic scenarios with white Gaussian noise (WGN) for attack strategy. Results demonstrate that our method outperforms a recently suggested scheme.
2023-04-14
Gong, Dehao, Liu, Yunqing.  2022.  A Mechine Learning Approach for Botnet Detection Using LightGBM. 2022 3rd International Conference on Computer Vision, Image and Deep Learning & International Conference on Computer Engineering and Applications (CVIDL & ICCEA). :829–833.
The botnet-based network assault are one of the most serious security threats overlay the Internet this day. Although significant progress has been made in this region of research in recent years, it is still an ongoing and challenging topic to virtually direction the threat of botnets due to their continuous evolution, increasing complexity and stealth, and the difficulties in detection and defense caused by the limitations of network and system architectures. In this paper, we propose a novel and efficient botnet detection method, and the results of the detection method are validated with the CTU-13 dataset.
2023-01-13
Bong, Kijung, Kim, Jonghyun.  2022.  Analysis of Intrusion Detection Performance by Smoothing Factor of Gaussian NB Model Using Modified NSL-KDD Dataset. 2022 13th International Conference on Information and Communication Technology Convergence (ICTC). :1471—1476.
Recently, research on AI-based network intrusion detection has been actively conducted. In previous studies, the machine learning models such as SVM (Support Vector Machine) and RF (Random Forest) showed consistently high performance, whereas the NB (Naïve Bayes) showed various performances with large deviations. In the paper, after analyzing the cause of the NB models showing various performances addressed in the several studies, we measured the performance of the Gaussian NB model according to the smoothing factor that is closely related to these causes. Furthermore, we compared the performance of the Gaussian NB model with that of the other models as a zero-day attack detection system. As a result of the experiment, the accuracy was 38.80% and 87.99% in case that the smoothing factor is 0 and default respectively, and the highest accuracy was 94.53% in case that the smoothing factor is 1e-01. In the experiment, we used only some types of the attack data in the NSL-KDD dataset. The experiments showed the applicability of the Gaussian NB model as a zero-day attack detection system in the future. In addition, it is clarified that the smoothing factor of the Gaussian NB model determines the shape of gaussian distribution that is related to the likelihood.
Krishna, P. Vamsi, Matta, Venkata Durga Rao.  2022.  A Unique Deep Intrusion Detection Approach (UDIDA) for Detecting the Complex Attacks. 2022 International Conference on Edge Computing and Applications (ICECAA). :557—560.
Intrusion Detection System (IDS) is one of the applications to detect intrusions in the network. IDS aims to detect any malicious activities that protect the computer networks from unknown persons or users called attackers. Network security is one of the significant tasks that should provide secure data transfer. Virtualization of networks becomes more complex for IoT technology. Deep Learning (DL) is most widely used by many networks to detect the complex patterns. This is very suitable approaches for detecting the malicious nodes or attacks. Software-Defined Network (SDN) is the default virtualization computer network. Attackers are developing new technology to attack the networks. Many authors are trying to develop new technologies to attack the networks. To overcome these attacks new protocols are required to prevent these attacks. In this paper, a unique deep intrusion detection approach (UDIDA) is developed to detect the attacks in SDN. Performance shows that the proposed approach is achieved more accuracy than existing approaches.
2023-01-05
Kumar, Marri Ranjith, Malathi, K..  2022.  An Innovative Method in Improving the accuracy in Intrusion detection by comparing Random Forest over Support Vector Machine. 2022 International Conference on Business Analytics for Technology and Security (ICBATS). :1—6.
Improving the accuracy of intruders in innovative Intrusion detection by comparing Machine Learning classifiers such as Random Forest (RF) with Support Vector Machine (SVM). Two groups of supervised Machine Learning algorithms acquire perfection by looking at the Random Forest calculation (N=20) with the Support Vector Machine calculation (N=20)G power value is 0.8. Random Forest (99.3198%) has the highest accuracy than the SVM (9S.56l5%) and the independent T-test was carried out (=0.507) and shows that it is statistically insignificant (p \textgreater0.05) with a confidence value of 95% by comparing RF and SVM. Conclusion: The comparative examination displays that the Random Forest is more productive than the Support Vector Machine for identifying the intruders are significantly tested.
2022-12-23
Montano, Isabel Herrera, de La Torre Díez, Isabel, Aranda, Jose Javier García, Diaz, Juan Ramos, Cardín, Sergio Molina, López, Juan José Guerrero.  2022.  Secure File Systems for the Development of a Data Leak Protection (DLP) Tool Against Internal Threats. 2022 17th Iberian Conference on Information Systems and Technologies (CISTI). :1–7.
Data leakage by employees is a matter of concern for companies and organizations today. Previous studies have shown that existing Data Leakage Protection (DLP) systems on the market, the more secure they are, the more intrusive and tedious they are to work with. This paper proposes and assesses the implementation of four technologies that enable the development of secure file systems for insider threat-focused, low-intrusive and user-transparent DLP tools. Two of these technologies are configurable features of the Windows operating system (Minifilters and Server Message Block), the other two are virtual file systems (VFS) Dokan and WinFsp, which mirror the real file system (RFS) allowing it to incorporate security techniques. In the assessment of the technologies, it was found that the implementation of VFS was very efficient and simple. WinFsp and Dokan presented a performance of 51% and 20% respectively, with respect to the performance of the operations in the RFS. This result may seem relatively low, but it should be taken into account that the calculation includes read and write encryption and decryption operations as appropriate for each prototype. Server Message Block (SMB) presented a low performance (3%) so it is not considered viable for a solution like this, while Minifilters present the best performance but require high programming knowledge for its evolution. The prototype presented in this paper and its strategy provides an acceptable level of comfort for the user, and a high level of security.
ISSN: 2166-0727
2022-12-20
Hasan, Syed Rakib, Chowdhury, Mostafa Zaman, Saiam, Md..  2022.  A New Quantum Visible Light Communication for Future Wireless Network Systems. 2022 International Conference on Advancement in Electrical and Electronic Engineering (ICAEEE). :1–4.
In the near future, the high data rate challenge would not be possible by using the radio frequency (RF) only. As the user will increase, the network traffic will increase proportionally. Visible light communication (VLC) is a good solution to support huge number of indoor users. VLC has high data rate over RF communication. The way internet users are increasing, we have to think over VLC technology. Not only the data rate is a concern but also its security, cost, and reliability have to be considered for a good communication network. Quantum technology makes a great impact on communication and computing in both areas. Quantum communication technology has the ability to support better channel capacity, higher security, and lower latency. This paper combines the quantum technology over the existing VLC and compares the performance between quantum visible light communication performance (QVLC) over the existing VLC system. Research findings clearly show that the performance of QVLC is better than the existing VLC system.
Kabir, Alamgir, Ahammed, Md. Tabil, Das, Chinmoy, Kaium, Mehedi Hasan, Zardar, Md. Abu, Prathibha, Soma.  2022.  Light Fidelity (Li-Fi) based Indoor Communication System. 2022 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI). :1–5.
Wireless-fidelity (Wi-Fi) and Bluetooth are examples of modern wireless communication technologies that employ radio waves as the primary channel for data transmission. but it ought to find alternatives over the limitation and interference in the radio frequency (RF) band. For viable alternatives, visible light communication (VLC) technology comes to play as Light Fidelity (Li-Fi) which uses visible light as a channel for delivering very high-speed communication in a Wi-Fi way. In terms of availability, bandwidth, security and efficiency, Li-Fi is superior than Wi-Fi. In this paper, we present a Li-Fi-based indoor communication system. prototype model has been proposed for single user scenario using visible light portion of electromagnetic spectrum. This system has been designed for audio data communication in between the users in transmitter and receiver sections. LED and photoresistor have been used as optical source and receiver respectively. The electro-acoustic transducer provides the required conversion of electrical-optical signal in both ways. This system might overcome problems like radio-frequency bandwidth scarcity However, its major problem is that it only works when it is pointed directly at the target.
2022-12-07
Kramer, Jack, Lee, Daehun, Cho, Sinwoo, Jahanbani, Shahin, Lai, Keji, Lu, Ruochen.  2022.  Acoustic Wave Focusing Lens at Radio Frequencies in Thin-Film Lithium Niobate. 2022 IEEE MTT-S International Conference on Microwave Acoustics and Mechanics (IC-MAM). :9—12.
Expanding techniques for chip-scale acoustic wave focusing would open doors for advancements in signal processing and quantum electromechanical microsystems. In this paper, we present a method for acoustic wave focusing and wavefront shaping at radio frequencies (RF), validated with thin-film lithium niobite on a low-loss and high coupling silicon carbide (LiNbO3-on-SiC) testbed. By depositing a metal layer, we can mitigate the piezoelectric stiffening effect, and reduce the acoustic wave speed in a patterned area. Employing a design analogous to geometric optical systems, efficient acoustic wave focusing is experimentally observed. With more development, this technique could be employed in emerging acoustic microsystems.
2022-10-13
Basit, Abdul, Zafar, Maham, Javed, Abdul Rehman, Jalil, Zunera.  2020.  A Novel Ensemble Machine Learning Method to Detect Phishing Attack. 2020 IEEE 23rd International Multitopic Conference (INMIC). :1—5.
Currently and particularly with remote working scenarios during COVID-19, phishing attack has become one of the most significant threats faced by internet users, organizations, and service providers. In a phishing attack, the attacker tries to steal client sensitive data (such as login, passwords, and credit card details) using spoofed emails and fake websites. Cybercriminals, hacktivists, and nation-state spy agencies have now got a fertilized ground to deploy their latest innovative phishing attacks. Timely detection of phishing attacks has become most crucial than ever. Machine learning algorithms can be used to accurately detect phishing attacks before a user is harmed. This paper presents a novel ensemble model to detect phishing attacks on the website. We select three machine learning classifiers: Artificial Neural Network (ANN), K-Nearest Neighbors (KNN), and Decision Tree (C4.5) to use in an ensemble method with Random Forest Classifier (RFC). This ensemble method effectively detects website phishing attacks with better accuracy than existing studies. Experimental results demonstrate that the ensemble of KNN and RFC detects phishing attacks with 97.33% accuracy.
2022-10-12
BOUIJIJ, Habiba, BERQIA, Amine.  2021.  Machine Learning Algorithms Evaluation for Phishing URLs Classification. 2021 4th International Symposium on Advanced Electrical and Communication Technologies (ISAECT). :01—05.
Phishing URL is a type of cyberattack, based on falsified URLs. The number of phishing URL attacks continues to increase despite cybersecurity efforts. According to the Anti-Phishing Working Group (APWG), the number of phishing websites observed in 2020 is 1 520 832, doubling over the course of a year. Various algorithms, techniques and methods can be used to build models for phishing URL detection and classification. From our reading, we observed that Machine Learning (ML) is one of the recent approaches used to detect and classify phishing URL in an efficient and proactive way. In this paper, we evaluate eleven of the most adopted ML algorithms such as Decision Tree (DT), Nearest Neighbours (KNN), Gradient Boosting (GB), Logistic Regression (LR), Naïve Bayes (NB), Random Forest (RF), Support Vector Machines (SVM), Neural Network (NN), Ex-tra\_Tree (ET), Ada\_Boost (AB) and Bagging (B). To do that, we compute detection accuracy metric for each algorithm and we use lexical analysis to extract the URL features.
2022-08-12
de Vito, Luca, Picariello, Francesco, Rapuano, Sergio, Tudosa, Ioan.  2021.  Compressive Sampling on RFSoC for Distributed Wideband RF Spectrum Measurements. 2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). :1—6.
This paper presents the application of Compressive Sampling (CS) to the realization of a wideband receiver for distributed spectrum monitoring. The proposed prototype performs the non-uniform sampling CS-based technique, while the signal reconstruction is realized by the Orthogonal Matching Pursuit (OMP) algorithm on a personal computer. A first experimental analysis has been conducted on the prototype by assessing several figures of merit, thus characterizing its performance in the time, frequency and modulation domains. The obtained results demonstrate that the proposed prototype can achieve good performance in all specified domains with Compression Ratios (CRs) up to 10 for a 4-QAM (Quadrature Amplitude Modulation) signal having carrier frequency of 350 MHz and working at a symbol rate of 46 MSym/s.
2022-07-14
Liu, Hongbo, Wang, Yan, Ren, Yanzhi, Chen, Yingying.  2021.  Bipartite Graph Matching Based Secret Key Generation. IEEE INFOCOM 2021 - IEEE Conference on Computer Communications. :1—10.
The physical layer secret key generation exploiting wireless channel reciprocity has attracted considerable attention in the past two decades. On-going research have demonstrated its viability in various radio frequency (RF) systems. Most of existing work rely on quantization technique to convert channel measurements into digital binaries that are suitable for secret key generation. However, non-simultaneous packet exchanges in time division duplex systems and noise effects in practice usually create random channel measurements between two users, leading to inconsistent quantization results and mismatched secret bits. While significant efforts were spent in recent research to mitigate such non-reciprocity, no efficient method has been found yet. Unlike existing quantization-based approaches, we take a different viewpoint and perform the secret key agreement by solving a bipartite graph matching problem. Specifically, an efficient dual-permutation secret key generation method, DP-SKG, is developed to match the randomly permuted channel measurements between a pair of users by minimizing their discrepancy holistically. DP-SKG allows two users to generate the same secret key based on the permutation order of channel measurements despite the non-reciprocity over wireless channels. Extensive experimental results show that DP-SKG could achieve error-free key agreement on received signal strength (RSS) with a low cost under various scenarios.
Liu, Yang, Wang, Meng, Xu, Jing, Gong, Shimin, Hoang, Dinh Thai, Niyato, Dusit.  2021.  Boosting Secret Key Generation for IRS-Assisted Symbiotic Radio Communications. 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring). :1—6.
Symbiotic radio (SR) has recently emerged as a promising technology to boost spectrum efficiency of wireless communications by allowing reflective communications underlying the active RF communications. In this paper, we leverage SR to boost physical layer security by using an array of passive reflecting elements constituting the intelligent reflecting surface (IRS), which is reconfigurable to induce diverse RF radiation patterns. In particular, by switching the IRS's phase shifting matrices, we can proactively create dynamic channel conditions, which can be exploited by the transceivers to extract common channel features and thus used to generate secret keys for encrypted data transmissions. As such, we firstly present the design principles for IRS-assisted key generation and verify a performance improvement in terms of the secret key generation rate (KGR). Our analysis reveals that the IRS's random phase shifting may result in a non-uniform channel distribution that limits the KGR. Therefore, to maximize the KGR, we propose both a heuristic scheme and deep reinforcement learning (DRL) to control the switching of the IRS's phase shifting matrices. Simulation results show that the DRL approach for IRS-assisted key generation can significantly improve the KGR.
2022-07-12
ERÇİN, Mehmet Serhan, YOLAÇAN, Esra Nergis.  2021.  A system for redicting SQLi and XSS Attacks. 2021 International Conference on Information Security and Cryptology (ISCTURKEY). :155—160.
In this study, it is aimed to reduce False-Alarm levels and increase the correct detection rate in order to reduce this uncertainty. Within the scope of the study, 13157 SQLi and XSS type malicious and 10000 normal HTTP Requests were used. All HTTP requests were received from the same web server, and it was observed that normal requests and malicious requests were close to each other. In this study, a novel approach is presented via both digitization and expressing the data with words in the data preprocessing stages. LSTM, MLP, CNN, GNB, SVM, KNN, DT, RF algorithms were used for classification and the results were evaluated with accuracy, precision, recall and F1-score metrics. As a contribution of this study, we can clearly express the following inferences. Each payload even if it seems different which has the same impact maybe that we can clearly view after the preprocessing phase. After preprocessing we are calculating euclidean distances which brings and gives us the relativity between expressions. When we put this relativity as an entry data to machine learning and/or deep learning models, perhaps we can understand the benign request or the attack vector difference.
2022-06-14
Zuech, Richard, Hancock, John, Khoshgoftaar, Taghi M..  2021.  Feature Popularity Between Different Web Attacks with Supervised Feature Selection Rankers. 2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA). :30–37.
We introduce the novel concept of feature popularity with three different web attacks and big data from the CSE-CIC-IDS2018 dataset: Brute Force, SQL Injection, and XSS web attacks. Feature popularity is based upon ensemble Feature Selection Techniques (FSTs) and allows us to more easily understand common important features between different cyberattacks, for two main reasons. First, feature popularity lists can be generated to provide an easy comprehension of important features across different attacks. Second, the Jaccard similarity metric can provide a quantitative score for how similar feature subsets are between different attacks. Both of these approaches not only provide more explainable and easier-to-understand models, but they can also reduce the complexity of implementing models in real-world systems. Four supervised learning-based FSTs are used to generate feature subsets for each of our three different web attack datasets, and then our feature popularity frameworks are applied. For these three web attacks, the XSS and SQL Injection feature subsets are the most similar per the Jaccard similarity. The most popular features across all three web attacks are: Flow\_Bytes\_s, FlowİAT\_Max, and Flow\_Packets\_s. While this introductory study is only a simple example using only three web attacks, this feature popularity concept can be easily extended, allowing an automated framework to more easily determine the most popular features across a very large number of attacks and features.
2022-06-07
Varsha Suresh, P., Lalitha Madhavu, Minu.  2021.  Insider Attack: Internal Cyber Attack Detection Using Machine Learning. 2021 12th International Conference on Computing Communication and Networking Technologies (ICCCNT). :1–7.
A Cyber Attack is a sudden attempt launched by cybercriminals against multiple computers or networks. According to evolution of cyber space, insider attack is the most serious attack faced by end users, all over the world. Cyber Security reports shows that both US federal Agency as well as different organizations faces insider threat. Machine learning (ML) provide an important technology to secure data from insider threats. Random Forest is the best algorithm that focus on user's action, services and ability for insider attack detection based on data granularity. Substantial raise in the count of decision tree, increases the time consumption and complexity of Random Forest. A novel algorithm Known as Random Forest With Randomized Weighted Fuzzy Feature Set (RF-RWFF) is developed. Fuzzy Membership Function is used for feature aggregation and Randomized Weighted Majority Algorithm (RWMA) is used in the prediction part of Random Forest (RF) algorithm to perform voting. RWMA transform conventional Random Forest, to a perceptron like algorithm and increases the miliage. The experimental results obtained illustrate that the proposed model exhibits an overall improvement in accuracy and recall rate with very much decrease in time complexity compared to conventional Random Forest algorithm. This algorithm can be used in organization and government sector to detect insider fastly and accurately.
2022-05-19
Aljubory, Nawaf, Khammas, Ban Mohammed.  2021.  Hybrid Evolutionary Approach in Feature Vector for Ransomware Detection. 2021 International Conference on Intelligent Technology, System and Service for Internet of Everything (ITSS-IoE). :1–6.

Ransomware is one of the most serious threats which constitute a significant challenge in the cybersecurity field. The cybercriminals use this attack to encrypts the victim's files or infect the victim's devices to demand ransom in exchange to restore access to these files and devices. The escalating threat of Ransomware to thousands of individuals and companies requires an urgent need for creating a system capable of proactively detecting and preventing ransomware. In this research, a new approach is proposed to detect and classify ransomware based on three machine learning algorithms (Random Forest, Support Vector Machines , and Näive Bayes). The features set was extracted directly from raw byte using static analysis technique of samples to improve the detection speed. To offer the best detection accuracy, CF-NCF (Class Frequency - Non-Class Frequency) has been utilized for generate features vectors. The proposed approach can differentiate between ransomware and goodware files with a detection accuracy of up to 98.33 percent.

J, Goutham Kumar, S, Gowri, Rajendran, Surendran, Vimali, J.S., Jabez, J., Srininvasulu, Senduru.  2021.  Identification of Cyber Threats and Parsing of Data. 2021 5th International Conference on Trends in Electronics and Informatics (ICOEI). :556–564.
One of the significant difficulties in network safety is the arrangement of a mechanized and viable digital danger's location strategy. This paper presents an AI procedure for digital dangers recognition, in light of fake neural organizations. The proposed procedure changes large number of gathered security occasions over to singular occasion profiles and utilize a profound learning-based discovery strategy for upgraded digital danger identification. This research work develops an AI-SIEM framework dependent on a blend of occasion profiling for information preprocessing and distinctive counterfeit neural organization techniques by including FCNN, CNN, and LSTM. The framework centers around separating between obvious positive and bogus positive cautions, consequently causing security examiners to quickly react to digital dangers. All trials in this investigation are performed by creators utilizing two benchmark datasets (NSLKDD and CICIDS2017) and two datasets gathered in reality. To assess the presentation correlation with existing techniques, tests are carried out by utilizing the five ordinary AI strategies (SVM, k-NN, RF, NB, and DT). Therefore, the exploratory aftereffects of this examination guarantee that our proposed techniques are fit for being utilized as learning-based models for network interruption discovery and show that despite the fact that it is utilized in reality, the exhibition beats the traditional AI strategies.
Perrone, Paola, Flammini, Francesco, Setola, Roberto.  2021.  Machine Learning for Threat Recognition in Critical Cyber-Physical Systems. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :298–303.

Cybersecurity has become an emerging challenge for business information management and critical infrastructure protection in recent years. Artificial Intelligence (AI) has been widely used in different fields, but it is still relatively new in the area of Cyber-Physical Systems (CPS) security. In this paper, we provide an approach based on Machine Learning (ML) to intelligent threat recognition to enable run-time risk assessment for superior situation awareness in CPS security monitoring. With the aim of classifying malicious activity, several machine learning methods, such as k-nearest neighbours (kNN), Naïve Bayes (NB), Support Vector Machine (SVM), Decision Tree (DT) and Random Forest (RF), have been applied and compared using two different publicly available real-world testbeds. The results show that RF allowed for the best classification performance. When used in reference industrial applications, the approach allows security control room operators to get notified of threats only when classification confidence will be above a threshold, hence reducing the stress of security managers and effectively supporting their decisions.

2022-05-12
Aribisala, Adedayo, Khan, Mohammad S., Husari, Ghaith.  2021.  MACHINE LEARNING ALGORITHMS AND THEIR APPLICATIONS IN CLASSIFYING CYBER-ATTACKS ON A SMART GRID NETWORK. 2021 IEEE 12th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON). :0063–0069.
Smart grid architecture and Software-defined Networking (SDN) have evolved into a centrally controlled infrastructure that captures and extracts data in real-time through sensors, smart-meters, and virtual machines. These advances pose a risk and increase the vulnerabilities of these infrastructures to sophisticated cyberattacks like distributed denial of service (DDoS), false data injection attack (FDIA), and Data replay. Integrating machine learning with a network intrusion detection system (NIDS) can improve the system's accuracy and precision when detecting suspicious signatures and network anomalies. Analyzing data in real-time using trained and tested hyperparameters on a network traffic dataset applies to most network infrastructures. The NSL-KDD dataset implemented holds various classes, attack types, protocol suites like TCP, HTTP, and POP, which are critical to packet transmission on a smart grid network. In this paper, we leveraged existing machine learning (ML) algorithms, Support vector machine (SVM), K-nearest neighbor (KNN), Random Forest (RF), Naïve Bayes (NB), and Bagging; to perform a detailed performance comparison of selected classifiers. We propose a multi-level hybrid model of SVM integrated with RF for improved accuracy and precision during network filtering. The hybrid model SVM-RF returned an average accuracy of 94% in 10-fold cross-validation and 92.75%in an 80-20% split during class classification.