Biblio
Currently, the complexity of software quality and testing is increasing exponentially with a huge number of challenges knocking doors, especially when testing a mission-critical application in banking and other critical domains, or the new technology trends with decentralized and nonintegrated testing tools. From practical experience, software testing has become costly and more effort-intensive with unlimited scope. This thesis promotes the Scalable Quality and Testing Lab (SQTL), it's a centralized quality and testing platform, which integrates a powerful manual, automation and business intelligence tools. SQTL helps quality engineers (QE) effectively organize, manage and control all testing activities in one centralized lab, starting from creating test cases, then executing different testing types such as web, security and others. And finally, ending with analyzing and displaying all testing activities result in an interactive dashboard, which allows QE to forecast new bugs especially those related to security. The centralized SQTL is to empower QE during the testing cycle, help them to achieve a greater level of software quality in minimum time, effort and cost, and decrease defect density metric.
In this paper, we propose a technique to detect phishing attacks based on behavior of human when exposed to fake website. Some online users submit fake credentials to the login page before submitting their actual credentials. He/She observes the login status of the resulting page to check whether the website is fake or legitimate. We automate the same behavior with our application (FeedPhish) which feeds fake values into login page. If the web page logs in successfully, it is classified as phishing otherwise it undergoes further heuristic filtering. If the suspicious site passes through all heuristic filters then the website is classified as a legitimate site. As per the experimentation results, our application has achieved a true positive rate of 97.61%, true negative rate of 94.37% and overall accuracy of 96.38%. Our application neither demands third party services nor prior knowledge like web history, whitelist or blacklist of URLS. It is able to detect not only zero-day phishing attacks but also detects phishing sites which are hosted on compromised domains.