Visible to the public Biblio

Filters: Keyword is network diameter  [Clear All Filters]
2020-12-02
Nleya, B., Khumalo, P., Mutsvangwa, A..  2019.  A Restricted Intermediate Node Buffering-Based Contention Control Scheme for OBS Networks. 2019 International Conference on Advances in Big Data, Computing and Data Communication Systems (icABCD). :1—6.
Optical burst switching (OBS) is a candidate switching paradigm for future backbone all-optical networks. However, data burst contention can be a major problem especially as the number of lightpath connections as well as the overall network radius increases. Furthermore, the absence of or limited buffering provision in core nodes, coupled with the standard one-way resources signaling aggravate contention occurrences resulting in some of the contending bursts being discarded as a consequence. Contention avoidance as well as resolution measures can be applied in such networks in order to resolve any contention issues. In that way, the offered quality of service (QoS) as well as the network performance will remain consistent and reliable. In particular, to maintain the cost effectiveness of OBS deployment, restricted intermediate buffering can be implemented to buffer contending bursts that have already traversed much of the network on their way to the intended destination. Hence in this paper we propose and analyze a restricted intermediate Node Buffering-based routing and wavelength assignment scheme (RI-RWA) scheme to address contention occurrences as well as prevent deletion of contending bursts. The scheme primarily prioritizes the selection of primary as well as deflection paths for establishing lightpath connections paths as a function of individual wavelength contention performances. It further facilitates and allows partial intermediate buffering provisioning for any data bursts that encounter contention after having already propagated more than half the network's diameter. We evaluate the scheme's performance by simulation and obtained results show that the scheme indeed does improve on key network performance metrics such as fairness, load balancing as well as throughput.
2018-04-02
Hayawi, K., Ho, P. H., Mathew, S. S., Peng, L..  2017.  Securing the Internet of Things: A Worst-Case Analysis of Trade-Off between Query-Anonymity and Communication-Cost. 2017 IEEE 31st International Conference on Advanced Information Networking and Applications (AINA). :939–946.

Cloud services are widely used to virtualize the management and actuation of the real-world the Internet of Things (IoT). Due to the increasing privacy concerns regarding querying untrusted cloud servers, query anonymity has become a critical issue to all the stakeholders which are related to assessment of the dependability and security of the IoT system. The paper presents our study on the problem of query receiver-anonymity in the cloud-based IoT system, where the trade-off between the offered query-anonymity and the incurred communication is considered. The paper will investigate whether the accepted worst-case communication cost is sufficient to achieve a specific query anonymity or not. By way of extensive theoretical analysis, it shows that the bounds of worst-case communication cost is quadratically increased as the offered level of anonymity is increased, and they are quadratic in the network diameter for the opposite range. Extensive simulation is conducted to verify the analytical assertions.