Biblio
With the rapid development of the mobile Internet, Android has been the most popular mobile operating system. Due to the open nature of Android, c countless malicious applications are hidden in a large number of benign applications, which pose great threats to users. Most previous malware detection approaches mainly rely on features such as permissions, API calls, and opcode sequences. However, these approaches fail to capture structural semantics of applications. In this paper, we propose AMDroid that leverages function call graphs (FCGs) representing the behaviors of applications and applies graph kernels to automatically learn the structural semantics of applications from FCGs. We evaluate AMDroid on the Genome Project, and the experimental results show that AMDroid is effective to detect Android malware with 97.49% detection accuracy.
Cloud Computing as of large is evolving at a faster pace with an ever changing set of cloud services. The amenities in the cloud are all enabled with respect to the public cloud services in their own enormous domain aspects commercially, which tend to be more insecure. These cloud services should be thus protected and secured which is very vital to the cloud infrastructures. Therefore, in this research work, we have identified security features with a self-heal approach that could be rendered on the infrastructure as a service (IaaS) in a private cloud environment. We have investigated the attack model from the virtual machine snapshots and have analyzed based on the supervised machine learning techniques. The virtual machines memory snapshots API call sequences are considered as input for the supervised and unsupervised machine learning algorithms to classify the attacked and the un-attacked virtual machine memory snapshots. The obtained set of the attacked virtual machine memory snapshots are given as input to the self-heal algorithm which is enabled to retrieve back the functionality of the virtual machines. Our method of detecting the malware attains about 93% of accuracy with respect to the virtual machine snapshots.
Currently, mobile botnet attacks have shifted from computers to smartphones due to its functionality, ease to exploit, and based on financial intention. Mostly, it attacks Android due to its popularity and high usage among end users. Every day, more and more malicious mobile applications (apps) with the botnet capability have been developed to exploit end users' smartphones. Therefore, this paper presents a new mobile botnet classification based on permission and Application Programming Interface (API) calls in the smartphone. This classification is developed using static analysis in a controlled lab environment and the Drebin dataset is used as the training dataset. 800 apps from the Google Play Store have been chosen randomly to test the proposed classification. As a result, 16 permissions and 31 API calls that are most related with mobile botnet have been extracted using feature selection and later classified and tested using machine learning algorithms. The experimental result shows that the Random Forest Algorithm has achieved the highest detection accuracy of 99.4% with the lowest false positive rate of 16.1% as compared to other machine learning algorithms. This new classification can be used as the input for mobile botnet detection for future work, especially for financial matters.