Visible to the public Biblio

Filters: Keyword is application programming interface  [Clear All Filters]
2021-01-20
Li, Y., Yang, Y., Yu, X., Yang, T., Dong, L., Wang, W..  2020.  IoT-APIScanner: Detecting API Unauthorized Access Vulnerabilities of IoT Platform. 2020 29th International Conference on Computer Communications and Networks (ICCCN). :1—5.

The Internet of Things enables interaction between IoT devices and users through the cloud. The cloud provides services such as account monitoring, device management, and device control. As the center of the IoT platform, the cloud provides services to IoT devices and IoT applications through APIs. Therefore, the permission verification of the API is essential. However, we found that some APIs are unverified, which allows unauthorized users to access cloud resources or control devices; it could threaten the security of devices and cloud. To check for unauthorized access to the API, we developed IoT-APIScanner, a framework to check the permission verification of the cloud API. Through observation, we found there is a large amount of interactive information between IoT application and cloud, which include the APIs and related parameters, so we can extract them by analyzing the code of the IoT application, and use this for mutating API test cases. Through these test cases, we can effectively check the permissions of the API. In our research, we extracted a total of 5 platform APIs. Among them, the proportion of APIs without permission verification reached 13.3%. Our research shows that attackers could use the API without permission verification to obtain user privacy or control of devices.

Rashid, A., Siddique, M. J., Ahmed, S. M..  2020.  Machine and Deep Learning Based Comparative Analysis Using Hybrid Approaches for Intrusion Detection System. 2020 3rd International Conference on Advancements in Computational Sciences (ICACS). :1—9.

Intrusion detection is one of the most prominent and challenging problem faced by cybersecurity organizations. Intrusion Detection System (IDS) plays a vital role in identifying network security threats. It protects the network for vulnerable source code, viruses, worms and unauthorized intruders for many intranet/internet applications. Despite many open source APIs and tools for intrusion detection, there are still many network security problems exist. These problems are handled through the proper pre-processing, normalization, feature selection and ranking on benchmark dataset attributes prior to the enforcement of self-learning-based classification algorithms. In this paper, we have performed a comprehensive comparative analysis of the benchmark datasets NSL-KDD and CIDDS-001. For getting optimal results, we have used the hybrid feature selection and ranking methods before applying self-learning (Machine / Deep Learning) classification algorithmic approaches such as SVM, Naïve Bayes, k-NN, Neural Networks, DNN and DAE. We have analyzed the performance of IDS through some prominent performance indicator metrics such as Accuracy, Precision, Recall and F1-Score. The experimental results show that k-NN, SVM, NN and DNN classifiers perform approx. 100% accuracy regarding performance evaluation metrics on the NSL-KDD dataset whereas k-NN and Naïve Bayes classifiers perform approx. 99% accuracy on the CIDDS-001 dataset.

Li, H., Xie, R., Kong, X., Wang, L., Li, B..  2020.  An Analysis of Utility for API Recommendation: Do the Matched Results Have the Same Efforts? 2020 IEEE 20th International Conference on Software Quality, Reliability and Security (QRS). :479—488.

The current evaluation of API recommendation systems mainly focuses on correctness, which is calculated through matching results with ground-truth APIs. However, this measurement may be affected if there exist more than one APIs in a result. In practice, some APIs are used to implement basic functionalities (e.g., print and log generation). These APIs can be invoked everywhere, and they may contribute less than functionally related APIs to the given requirements in recommendation. To study the impacts of correct-but-useless APIs, we use utility to measure them. Our study is conducted on more than 5,000 matched results generated by two specification-based API recommendation techniques. The results show that the matched APIs are heavily overlapped, 10% APIs compose more than 80% matched results. The selected 10% APIs are all correct, but few of them are used to implement the required functionality. We further propose a heuristic approach to measure the utility and conduct an online evaluation with 15 developers. Their reports confirm that the matched results with higher utility score usually have more efforts on programming than the lower ones.

Chaudhary, H., Sharma, A. K..  2020.  Hybrid Technique of Genetic Algorithm and Extended Diffie-Hellman Algorithm used for Intrusion Detection in Cloud. 2020 International Conference on Electrical and Electronics Engineering (ICE3). :513—516.

It is a well-known fact that the use of Cloud Computing is becoming very common all over the world for data storage and analysis. But the proliferation of the threats in cloud is also their; threats like Information breaches, Data thrashing, Cloud account or Service traffic hijacking, Insecure APIs, Denial of Service, Malicious Insiders, Abuse of Cloud services, Insufficient due Diligence and Shared Technology Vulnerable. This paper tries to come up with the solution for the threat (Denial of Service) in cloud. We attempt to give our newly proposed model by the hybridization of Genetic algorithm and extension of Diffie Hellman algorithm and tries to make cloud transmission secure from upcoming intruders.

Mavroudis, V., Svenda, P..  2020.  JCMathLib: Wrapper Cryptographic Library for Transparent and Certifiable JavaCard Applets. 2020 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :89—96.

The JavaCard multi-application platform is now deployed to over twenty billion smartcards, used in various applications ranging from banking payments and authentication tokens to SIM cards and electronic documents. In most of those use cases, access to various cryptographic primitives is required. The standard JavaCard API provides a basic level of access to such functionality (e.g., RSA encryption) but does not expose low-level cryptographic primitives (e.g., elliptic curve operations) and essential data types (e.g., Integers). Developers can access such features only through proprietary, manufacturer-specific APIs. Unfortunately, such APIs significantly reduce the interoperability and certification transparency of the software produced as they require non-disclosure agreements (NDA) that prohibit public sharing of the applet's source code.We introduce JCMathLib, an open library that provides an intermediate layer realizing essential data types and low-level cryptographic primitives from high-level operations. To achieve this, we introduce a series of optimization techniques for resource-constrained platforms that make optimal use of the underlying hardware, while having a small memory footprint. To the best of our knowledge, it is the first generic library for low-level cryptographic operations in JavaCards that does not rely on a proprietary API.Without any disclosure limitations, JCMathLib has the potential to increase transparency by enabling open code sharing, release of research prototypes, and public code audits. Moreover, JCMathLib can help resolve the conflict between strict open-source licenses such as GPL and proprietary APIs available only under an NDA. This is of particular importance due to the introduction of JavaCard API v3.1, which targets specifically IoT devices, where open-source development might be more common than in the relatively closed world of government-issued electronic documents.

Focardi, R., Luccio, F. L..  2020.  Automated Analysis of PUF-based Protocols. 2020 IEEE 33rd Computer Security Foundations Symposium (CSF). :304—317.

Physical Unclonable Functions (PUFs) are a promising technology to secure low-cost devices. A PUF is a function whose values depend on the physical characteristics of the underlying hardware: the same PUF implemented on two identical integrated circuits will return different values. Thus, a PUF can be used as a unique fingerprint identifying one specific physical device among (apparently) identical copies that run the same firmware on the same hardware. PUFs, however, are tricky to implement, and a number of attacks have been reported in the literature, often due to wrong assumptions about the provided security guarantees and/or the attacker model. In this paper, we present the first mechanized symbolic model for PUFs that allows for precisely reasoning about their security with respect to a variegate set of attackers. We consider mutual authentication protocols based on different kinds of PUFs and model attackers that are able to access PUF values stored on servers, abuse the PUF APIs, model the PUF behavior and exploit error correction data to reproduce the PUF values. We prove security properties and we formally specify the capabilities required by the attacker to break them. Our analysis points out various subtleties, and allows for a systematic comparison between different PUF-based protocols. The mechanized models are easily extensible and can be automatically checked with the Tamarin prover.

Suzic, B., Latinovic, M..  2020.  Rethinking Authorization Management of Web-APIs. 2020 IEEE International Conference on Pervasive Computing and Communications (PerCom). :1—10.

Service providers typically utilize Web APIs to enable the sharing of tenant data and resources with numerous third party web, cloud, and mobile applications. Security mechanisms such as OAuth 2.0 and API keys are commonly applied to manage authorization aspects of such integrations. However, these mechanisms impose functional and security drawbacks both for service providers and their users due to their static design, coarse and context insensitive capabilities, and weak interoperability. Implementing secure, feature-rich, and flexible data sharing services still poses a challenge that many providers face in the process of opening their interfaces to the public.To address these issues, we design the framework that allows pluggable and transparent externalization of authorization functionality for service providers and flexibility in defining and managing security aspects of resource sharing with third parties for their users. Our solution applies a holistic perspective that considers service descriptions, data fragments, security policies, as well as system interactions and states as an integrated space dynamically exposed and collaboratively accessed by agents residing across organizational boundaries.In this work we present design aspects of our contribution and illustrate its practical implementation by analyzing case scenario involving resource sharing of a popular service.

Hazhirpasand, M., Ghafari, M., Nierstrasz, O..  2020.  CryptoExplorer: An Interactive Web Platform Supporting Secure Use of Cryptography APIs. 2020 IEEE 27th International Conference on Software Analysis, Evolution and Reengineering (SANER). :632—636.

Research has shown that cryptographic APIs are hard to use. Consequently, developers resort to using code examples available in online information sources that are often not secure. We have developed a web platform, named CryptoExplorer, stocked with numerous real-world secure and insecure examples that developers can explore to learn how to use cryptographic APIs properly. This platform currently provides 3 263 secure uses, and 5 897 insecure uses of Java Cryptography Architecture mined from 2 324 Java projects on GitHub. A preliminary study shows that CryptoExplorer provides developers with secure crypto API use examples instantly, developers can save time compared to searching on the internet for such examples, and they learn to avoid using certain algorithms in APIs by studying misused API examples. We have a pipeline to regularly mine more projects, and, on request, we offer our dataset to researchers.

Mindermann, K., Wagner, S..  2020.  Fluid Intelligence Doesn't Matter! Effects of Code Examples on the Usability of Crypto APIs. 2020 IEEE/ACM 42nd International Conference on Software Engineering: Companion Proceedings (ICSE-Companion). :306—307.

Context : Programmers frequently look for the code of previously solved problems that they can adapt for their own problem. Despite existing example code on the web, on sites like Stack Overflow, cryptographic Application Programming Interfaces (APIs) are commonly misused. There is little known about what makes examples helpful for developers in using crypto APIs. Analogical problem solving is a psychological theory that investigates how people use known solutions to solve new problems. There is evidence that the capacity to reason and solve novel problems a.k.a Fluid Intelligence (Gf) and structurally and procedurally similar solutions support problem solving. Aim: Our goal is to understand whether similarity and Gf also have an effect in the context of using cryptographic APIs with the help of code examples. Method : We conducted a controlled experiment with 76 student participants developing with or without procedurally similar examples, one of two Java crypto libraries and measured the Gf of the participants as well as the effect on usability (effectiveness, efficiency, satisfaction) and security bugs. Results: We observed a strong effect of code examples with a high procedural similarity on all dependent variables. Fluid intelligence Gf had no effect. It also made no difference which library the participants used. Conclusions: Example code must be more highly similar to a concrete solution, not very abstract and generic to have a positive effect in a development task.

Gadient, P., Ghafari, M., Tarnutzer, M., Nierstrasz, O..  2020.  Web APIs in Android through the Lens of Security. 2020 IEEE 27th International Conference on Software Analysis, Evolution and Reengineering (SANER). :13—22.

Web communication has become an indispensable characteristic of mobile apps. However, it is not clear what data the apps transmit, to whom, and what consequences such transmissions have. We analyzed the web communications found in mobile apps from the perspective of security. We first manually studied 160 Android apps to identify the commonly-used communication libraries, and to understand how they are used in these apps. We then developed a tool to statically identify web API URLs used in the apps, and restore the JSON data schemas including the type and value of each parameter. We extracted 9714 distinct web API URLs that were used in 3 376 apps. We found that developers often use the java.net package for network communication, however, third-party libraries like OkHttp are also used in many apps. We discovered that insecure HTTP connections are seven times more prevalent in closed-source than in open-source apps, and that embedded SQL and JavaScript code is used in web communication in more than 500 different apps. This finding is devastating; it leaves billions of users and API service providers vulnerable to attack.

Atlidakis, V., Godefroid, P., Polishchuk, M..  2020.  Checking Security Properties of Cloud Service REST APIs. 2020 IEEE 13th International Conference on Software Testing, Validation and Verification (ICST). :387—397.

Most modern cloud and web services are programmatically accessed through REST APIs. This paper discusses how an attacker might compromise a service by exploiting vulnerabilities in its REST API. We introduce four security rules that capture desirable properties of REST APIs and services. We then show how a stateful REST API fuzzer can be extended with active property checkers that automatically test and detect violations of these rules. We discuss how to implement such checkers in a modular and efficient way. Using these checkers, we found new bugs in several deployed production Azure and Office365 cloud services, and we discuss their security implications. All these bugs have been fixed.

2020-08-14
Gu, Zuxing, Zhou, Min, Wu, Jiecheng, Jiang, Yu, Liu, Jiaxiang, Gu, Ming.  2019.  IMSpec: An Extensible Approach to Exploring the Incorrect Usage of APIs. 2019 International Symposium on Theoretical Aspects of Software Engineering (TASE). :216—223.
Application Programming Interfaces (APIs) usually have usage constraints, such as call conditions or call orders. Incorrect usage of these constraints, called API misuse, will result in system crashes, bugs, and even security problems. It is crucial to detect such misuses early in the development process. Though many approaches have been proposed over the last years, recent studies show that API misuses are still prevalent, especially the ones specific to individual projects. In this paper, we strive to improve current API-misuse detection capability for large-scale C programs. First, We propose IMSpec, a lightweight domain-specific language enabling developers to specify API usage constraints in three different aspects (i.e., parameter validation, error handling, and causal calling), which are the majority of API-misuse bugs. Then, we have tailored a constraint guided static analysis engine to automatically parse IMSpec rules and detect API-misuse bugs with rich semantics. We evaluate our approach on widely used benchmarks and real-world projects. The results show that our easily extensible approach performs better than state-of-the-art tools. We also discover 19 previously unknown bugs in real-world open-source projects, all of which have been confirmed by the corresponding developers.
Zolfaghari, Majid, Salimi, Solmaz, Kharrazi, Mehdi.  2019.  Inferring API Correct Usage Rules: A Tree-based Approach. 2019 16th International ISC (Iranian Society of Cryptology) Conference on Information Security and Cryptology (ISCISC). :78—84.
The lack of knowledge about API correct usage rules is one of the main reasons that APIs are employed incorrectly by programmers, which in some cases lead to serious security vulnerabilities. However, finding a correct usage rule for an API is a time-consuming and error-prone task, particularly in the absence of an API documentation. Existing approaches to extract correct usage rules are mostly based on majority API usages, assuming the correct usage is prevalent. Although statistically extracting API correct usage rules achieves reasonable accuracy, it cannot work correctly in the absence of a fair amount of sample usages. We propose inferring API correct usage rules independent of the number of sample usages by leveraging an API tree structure. In an API tree, each node is an API, and each node's children are APIs called by the parent API. Starting from lower-level APIs, it is possible to infer the correct usage rules for them by utilizing the available correct usage rules of their children. We developed a tool based on our idea for inferring API correct usages rules hierarchically, and have applied it to the source code of Linux kernel v4.3 drivers and found 24 previously reported bugs.
Gu, Zuxing, Wu, Jiecheng, Liu, Jiaxiang, Zhou, Min, Gu, Ming.  2019.  An Empirical Study on API-Misuse Bugs in Open-Source C Programs. 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC). 1:11—20.
Today, large and complex software is developed with integrated components using application programming interfaces (APIs). Correct usage of APIs in practice presents a challenge due to implicit constraints, such as call conditions or call orders. API misuse, i.e., violation of these constraints, is a well-known source of bugs, some of which can cause serious security vulnerabilities. Although researchers have developed many API-misuse detectors over the last two decades, recent studies show that API misuses are still prevalent. In this paper, we provide a comprehensive empirical study on API-misuse bugs in open-source C programs. To understand the nature of API misuses in practice, we analyze 830 API-misuse bugs from six popular programs across different domains. For all the studied bugs, we summarize their root causes, fix patterns and usage statistics. Furthermore, to understand the capabilities and limitations of state-of-the-art static analysis detectors for API-misuse detection, we develop APIMU4C, a dataset of API-misuse bugs in C code based on our empirical study results, and evaluate three widely-used detectors on it qualitatively and quantitatively. We share all the findings and present possible directions towards more powerful API-misuse detectors.
Ge, Jingquan, Gao, Neng, Tu, Chenyang, Xiang, Ji, Liu, Zeyi.  2019.  More Secure Collaborative APIs Resistant to Flush+Reload and Flush+Flush Attacks on ARMv8-A. 2019 26th Asia-Pacific Software Engineering Conference (APSEC). :410—417.
With the popularity of smart devices such as mobile phones and tablets, the security problem of the widely used ARMv8-A processor has received more and more attention. Flush+Reload and Flush+Flush cache attacks have become two of the most important security threats due to their low noise and high resolution. In order to resist Flush+Reload and Flush+Flush attacks, researchers proposed many defense methods. However, these existing methods have various shortcomings. The runtime defense methods using hardware performance counters cannot detect attacks fast enough, effectively detect Flush+Flush or avoid a high false positive rate. Static code analysis schemes are powerless for obfuscation techniques. The approaches of permanently reducing the resolution can only be utilized on browser products and cannot be applied in the system. In this paper, we design two more secure collaborative APIs-flush operation API and high resolution time API-which can resist Flush+Reload and Flush+Flush attacks. When the flush operation API is called, the high resolution time API temporarily reduces its resolution and automatically restores. Moreover, the flush operation API also has the ability to detect and handle suspected Flush+Reload and Flush+Flush attacks. The attack and performance comparison experiments prove that the two APIs we designed are safer and the performance losses are acceptable.
Walla, Sebastian, Rossow, Christian.  2019.  MALPITY: Automatic Identification and Exploitation of Tarpit Vulnerabilities in Malware. 2019 IEEE European Symposium on Security and Privacy (EuroS P). :590—605.
Law enforcement agencies regularly take down botnets as the ultimate defense against global malware operations. By arresting malware authors, and simultaneously infiltrating or shutting down a botnet's network infrastructures (such as C2 servers), defenders stop global threats and mitigate pending infections. In this paper, we propose malware tarpits, an orthogonal defense that does not require seizing botnet infrastructures, and at the same time can also be used to slow down malware spreading and infiltrate its monetization techniques. A tarpit is a network service that causes a client to stay busy with a network operation. Our work aims to automatically identify network operations used by malware that will block the malware either forever or for a significant amount of time. We describe how to non-intrusively exploit such tarpit vulnerabilities in malware to slow down or, ideally, even stop malware. Using dynamic malware analysis, we monitor how malware interacts with the POSIX and Winsock socket APIs. From this, we infer network operations that would have blocked when provided certain network inputs. We augment this vulnerability search with an automated generation of tarpits that exploit the identified vulnerabilities. We apply our prototype MALPITY on six popular malware families and discover 12 previously-unknown tarpit vulnerabilities, revealing that all families are susceptible to our defense. We demonstrate how to, e.g., halt Pushdo's DGA-based C2 communication, hinder SalityP2P peers from receiving commands or updates, and stop Bashlite's spreading engine.
Jin, Zhe, Chee, Kong Yik, Xia, Xin.  2019.  What Do Developers Discuss about Biometric APIs? 2019 IEEE International Conference on Software Maintenance and Evolution (ICSME). :348—352.
With the emergence of biometric technology in various applications, such as access control (e.g. mobile lock/unlock), financial transaction (e.g. Alibaba smile-to-pay) and time attendance, the development of biometric system attracts increasingly interest to the developers. Despite a sound biometric system gains the security assurance and great usability, it is a rather challenging task to develop an effective biometric system. For instance, many public available biometric APIs do not provide sufficient instructions / precise documentations on the usage of biometric APIs. Many developers are struggling in implementing these APIs in various tasks. Moreover, quick update on biometric-based algorithms (e.g. feature extraction and matching) may propagate to APIs, which leads to potential confusion to the system developers. Hence, we conduct an empirical study to the problems that the developers currently encountered while implementing the biometric APIs as well as the issues that need to be addressed when developing biometric systems using these APIs. We manually analyzed a total of 500 biometric API-related posts from various online media such as Stack Overflow and Neurotechnology. We reveal that 1) most of the problems encountered are related to the lack of precise documentation on the biometric APIs; 2) the incompatibility of biometric APIs cross multiple implementation environments.
Singleton, Larry, Zhao, Rui, Song, Myoungkyu, Siy, Harvey.  2019.  FireBugs: Finding and Repairing Bugs with Security Patterns. 2019 IEEE/ACM 6th International Conference on Mobile Software Engineering and Systems (MOBILESoft). :30—34.

Security is often a critical problem in software systems. The consequences of the failure lead to substantial economic loss or extensive environmental damage. Developing secure software is challenging, and retrofitting existing systems to introduce security is even harder. In this paper, we propose an automated approach for Finding and Repairing Bugs based on security patterns (FireBugs), to repair defects causing security vulnerabilities. To locate and fix security bugs, we apply security patterns that are reusable solutions comprising large amounts of software design experience in many different situations. In the evaluation, we investigated 2,800 Android app repositories to apply our approach to 200 subject projects that use javax.crypto APIs. The vision of our automated approach is to reduce software maintenance burdens where the number of outstanding software defects exceeds available resources. Our ultimate vision is to design more security patterns that have a positive impact on software quality by disseminating correlated sets of best security design practices and knowledge.

Mitra, Joydeep, Ranganath, Venkatesh-Prasad, Narkar, Aditya.  2019.  BenchPress: Analyzing Android App Vulnerability Benchmark Suites. 2019 34th IEEE/ACM International Conference on Automated Software Engineering Workshop (ASEW). :13—18.
In recent years, various benchmark suites have been developed to evaluate the efficacy of Android security analysis tools. Tool developers often choose such suites based on the availability and popularity of suites and not on their characteristics and relevance due to the lack of information about them. In this context, based on a recent effort, we empirically evaluated four Android-specific benchmark suites: DroidBench, Ghera, ICCBench, and UBCBench. For each benchmark suite, we identified the APIs used by the suite that were discussed on Stack Overflow in the context of Android app development and measured the usage of these APIs in a sample of 227K real-world apps (coverage). We also identified security-related APIs used in real-world apps but not in any of the above benchmark suites to assess the opportunities to extend benchmark suites (gaps).
Hussain, Fatima, Li, Weiyue, Noye, Brett, Sharieh, Salah, Ferworn, Alexander.  2019.  Intelligent Service Mesh Framework for API Security and Management. 2019 IEEE 10th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON). :0735—0742.
With the advancements in enterprise-level business development, the demand for new applications and services is overwhelming. For the development and delivery of such applications and services, enterprise businesses rely on Application Programming Interfaces (APIs). API management and classification is a cumbersome task considering the rapid increase in the number of APIs, and API to API calls. API Mashups, domain APIs and API service mesh are a few recommended techniques for ease of API creation, management, and monitoring. API service mesh is considered as one of the techniques in this regard, in which the service plane and the control plane are separated for improving efficiency as well as security. In this paper, we propose and implement a security framework for the creation of a secure API service mesh using Istio and Kubernetes. Afterwards, we propose an smart association model for automatic association of new APIs to already existing categories of service mesh. To the best of our knowledge, this smart association model is the first of its kind.
2018-04-02
Muthumanickam, K., Ilavarasan, E..  2017.  Optimizing Detection of Malware Attacks through Graph-Based Approach. 2017 International Conference on Technical Advancements in Computers and Communications (ICTACC). :87–91.

Today the technology advancement in communication technology permits a malware author to introduce code obfuscation technique, for example, Application Programming Interface (API) hook, to make detecting the footprints of their code more difficult. A signature-based model such as Antivirus software is not effective against such attacks. In this paper, an API graph-based model is proposed with the objective of detecting hook attacks during malicious code execution. The proposed model incorporates techniques such as graph-generation, graph partition and graph comparison to distinguish a legitimate system call from malicious system call. The simulation results confirm that the proposed model outperforms than existing approaches.

Yusof, M., Saudi, M. M., Ridzuan, F..  2017.  A New Mobile Botnet Classification Based on Permission and API Calls. 2017 Seventh International Conference on Emerging Security Technologies (EST). :122–127.

Currently, mobile botnet attacks have shifted from computers to smartphones due to its functionality, ease to exploit, and based on financial intention. Mostly, it attacks Android due to its popularity and high usage among end users. Every day, more and more malicious mobile applications (apps) with the botnet capability have been developed to exploit end users' smartphones. Therefore, this paper presents a new mobile botnet classification based on permission and Application Programming Interface (API) calls in the smartphone. This classification is developed using static analysis in a controlled lab environment and the Drebin dataset is used as the training dataset. 800 apps from the Google Play Store have been chosen randomly to test the proposed classification. As a result, 16 permissions and 31 API calls that are most related with mobile botnet have been extracted using feature selection and later classified and tested using machine learning algorithms. The experimental result shows that the Random Forest Algorithm has achieved the highest detection accuracy of 99.4% with the lowest false positive rate of 16.1% as compared to other machine learning algorithms. This new classification can be used as the input for mobile botnet detection for future work, especially for financial matters.