Biblio
Since radio frequency identification (RFID) technology has been used in various scenarios such as supply chain, access control system and credit card, tremendous efforts have been made to improve the authentication between tags and readers to prevent potential attacks. Though effective in certain circumstances, these existing methods usually require a server to maintain a database of identity related information for every tag, which makes the system vulnerable to the SQL injection attack and not suitable for distributed environment. To address these problems, we now propose a novel blockchain-based mutual authentication security protocol. In this new scheme, there is no need for the trusted third parties to provide security and privacy for the system. Authentication is executed as an unmodifiable transaction based on blockchain rather than database, which applies to distributed RFID systems with high security demand and relatively low real-time requirement. Analysis shows that our protocol is logically correct and can prevent multiple attacks.
Hackers create different types of Malware such as Trojans which they use to steal user-confidential information (e.g. credit card details) with a few simple commands, recent malware however has been created intelligently and in an uncontrolled size, which puts malware analysis as one of the top important subjects of information security. This paper proposes an efficient dynamic malware-detection method based on API similarity. This proposed method outperform the traditional signature-based detection method. The experiment evaluated 197 malware samples and the proposed method showed promising results of correctly identified malware.