Visible to the public Biblio

Filters: Keyword is Neuromorphics  [Clear All Filters]
2022-11-18
Paudel, Bijay Raj, Itani, Aashish, Tragoudas, Spyros.  2021.  Resiliency of SNN on Black-Box Adversarial Attacks. 2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA). :799–806.
Existing works indicate that Spiking Neural Networks (SNNs) are resilient to adversarial attacks by testing against few attack models. This paper studies adversarial attacks on SNNs using additional attack models and shows that SNNs are not inherently robust against many few-pixel L0 black-box attacks. Additionally, a method to defend against such attacks in SNNs is presented. The SNNs and the effects of adversarial attacks are tested on both software simulators as well as on SpiNNaker neuromorphic hardware.
2022-01-10
Schrenk, Bernhard.  2021.  Simplified Synaptic Receptor for Coherent Optical Neural Networks. 2021 IEEE Photonics Society Summer Topicals Meeting Series (SUM). :1–2.
Advancing artificial neural networks to the coherent optical domain offers several advantages, such as a filterless synaptic interconnect with increased routing flexibility. Towards this direction, a coherent synaptic receptor with integrated multiplication function will be experimentally evaluated for a 1-GHz train of 130-ps spikes.
2018-04-02
Alom, M. Z., Taha, T. M..  2017.  Network Intrusion Detection for Cyber Security on Neuromorphic Computing System. 2017 International Joint Conference on Neural Networks (IJCNN). :3830–3837.

In the paper, we demonstrate a neuromorphic cognitive computing approach for Network Intrusion Detection System (IDS) for cyber security using Deep Learning (DL). The algorithmic power of DL has been merged with fast and extremely power efficient neuromorphic processors for cyber security. In this implementation, the data has been numerical encoded to train with un-supervised deep learning techniques called Auto Encoder (AE) in the training phase. The generated weights of AE are used as initial weights for the supervised training phase using neural networks. The final weights are converted to discrete values using Discrete Vector Factorization (DVF) for generating crossbar weight, synaptic weights, and thresholds for neurons. Finally, the generated crossbar weights, synaptic weights, threshold, and leak values are mapped to crossbars and neurons. In the testing phase, the encoded test samples are converted to spiking form by using hybrid encoding technique. The model has been deployed and tested on the IBM Neurosynaptic Core Simulator (NSCS) and on actual IBM TrueNorth neurosynaptic chip. The experimental results show around 90.12% accuracy for network intrusion detection for cyber security on the physical neuromorphic chip. Furthermore, we have investigated the proposed system not only for detection of malicious packets but also for classifying specific types of attacks and achieved 81.31% recognition accuracy. The neuromorphic implementation provides incredible detection and classification accuracy for network intrusion detection with extremely low power.