Visible to the public Biblio

Filters: Keyword is AE  [Clear All Filters]
2020-03-09
Gope, Prosanta, Sikdar, Biplab.  2018.  An Efficient Privacy-Preserving Dynamic Pricing-Based Billing Scheme for Smart Grids. 2018 IEEE Conference on Communications and Network Security (CNS). :1–2.

This paper proposes a lightweight and privacy-preserving data aggregation scheme for dynamic electricity pricing based billing in smart grids using the concept of single-pass authenticated encryption (AE). Unlike existing literature that only considers static pricing, to the best of our knowledge, this is the first paper to address privacy under dynamic pricing.

2018-04-02
Yousefi-Azar, M., Varadharajan, V., Hamey, L., Tupakula, U..  2017.  Autoencoder-Based Feature Learning for Cyber Security Applications. 2017 International Joint Conference on Neural Networks (IJCNN). :3854–3861.

This paper presents a novel feature learning model for cyber security tasks. We propose to use Auto-encoders (AEs), as a generative model, to learn latent representation of different feature sets. We show how well the AE is capable of automatically learning a reasonable notion of semantic similarity among input features. Specifically, the AE accepts a feature vector, obtained from cyber security phenomena, and extracts a code vector that captures the semantic similarity between the feature vectors. This similarity is embedded in an abstract latent representation. Because the AE is trained in an unsupervised fashion, the main part of this success comes from appropriate original feature set that is used in this paper. It can also provide more discriminative features in contrast to other feature engineering approaches. Furthermore, the scheme can reduce the dimensionality of the features thereby signicantly minimising the memory requirements. We selected two different cyber security tasks: networkbased anomaly intrusion detection and Malware classication. We have analysed the proposed scheme with various classifiers using publicly available datasets for network anomaly intrusion detection and malware classifications. Several appropriate evaluation metrics show improvement compared to prior results.