Visible to the public Biblio

Filters: Keyword is network vulnerabilities  [Clear All Filters]
2023-06-09
Al-Amin, Mostafa, Khatun, Mirza Akhi, Nasir Uddin, Mohammed.  2022.  Development of Cyber Attack Model for Private Network. 2022 Second International Conference on Interdisciplinary Cyber Physical Systems (ICPS). :216—221.
Cyber Attack is the most challenging issue all over the world. Nowadays, Cyber-attacks are increasing on digital systems and organizations. Innovation and utilization of new digital technology, infrastructure, connectivity, and dependency on digital strategies are transforming day by day. The cyber threat scope has extended significantly. Currently, attackers are becoming more sophisticated, well-organized, and professional in generating malware programs in Python, C Programming, C++ Programming, Java, SQL, PHP, JavaScript, Ruby etc. Accurate attack modeling techniques provide cyber-attack planning, which can be applied quickly during a different ongoing cyber-attack. This paper aims to create a new cyber-attack model that will extend the existing model, which provides a better understanding of the network’s vulnerabilities.Moreover, It helps protect the company or private network infrastructure from future cyber-attacks. The final goal is to handle cyber-attacks efficacious manner using attack modeling techniques. Nowadays, many organizations, companies, authorities, industries, and individuals have faced cybercrime. To execute attacks using our model where honeypot, the firewall, DMZ and any other security are available in any environment.
2021-03-09
Anithaashri, T. P., Ravichandran, G..  2020.  Security Enhancement for the Network Amalgamation using Machine Learning Algorithm. 2020 International Conference on Smart Electronics and Communication (ICOSEC). :411—416.

Accessing the secured data through the network is a major task in emerging technology. Data needs to be protected from the network vulnerabilities, malicious users, hackers, sniffers, intruders. The novel framework has been designed to provide high security in data transaction through computer network. The implant of network amalgamation in the recent trends, make the way in security enhancement in an efficient manner through the machine learning algorithm. In this system the usage of the biometric authenticity plays a vital role for unique approach. The novel mathematical approach is used in machine learning algorithms to solve these problems and provide the security enhancement. The result shows that the novel method has consistent improvement in enhancing the security of data transactions in the emerging technologies.

2020-08-17
Musa, Tanvirali, Yeo, Kheng Cher, Azam, Sami, Shanmugam, Bharanidharan, Karim, Asif, Boer, Friso De, Nur, Fernaz Narin, Faisal, Fahad.  2019.  Analysis of Complex Networks for Security Issues using Attack Graph. 2019 International Conference on Computer Communication and Informatics (ICCCI). :1–6.
Organizations perform security analysis for assessing network health and safe-guarding their growing networks through Vulnerability Assessments (AKA VA Scans). The output of VA scans is reports on individual hosts and its vulnerabilities, which, are of little use as the origin of the attack can't be located from these. Attack Graphs, generated without an in-depth analysis of the VA reports, are used to fill in these gaps, but only provide cursory information. This study presents an effective model of depicting the devices and the data flow that efficiently identifies the weakest nodes along with the concerned vulnerability's origin.The complexity of the attach graph using MulVal has been greatly reduced using the proposed approach of using the risk and CVSS base score as evaluation criteria. This makes it easier for the user to interpret the attack graphs and thus reduce the time taken needed to identify the attack paths and where the attack originates from.
2018-06-20
Acarali, D., Rajarajan, M., Komninos, N., Herwono, I..  2017.  Event graphs for the observation of botnet traffic. 2017 8th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON). :628–634.

Botnets are a growing threat to the security of data and services on a global level. They exploit vulnerabilities in networks and host machines to harvest sensitive information, or make use of network resources such as memory or bandwidth in cyber-crime campaigns. Bot programs by nature are largely automated and systematic, and this is often used to detect them. In this paper, we extend upon existing work in this area by proposing a network event correlation method to produce graphs of flows generated by botnets, outlining the implementation and functionality of this approach. We also show how this method can be combined with statistical flow-based analysis to provide a descriptive chain of events, and test on public datasets with an overall success rate of 94.1%.

2018-04-02
Yousefi, M., Mtetwa, N., Zhang, Y., Tianfield, H..  2017.  A Novel Approach for Analysis of Attack Graph. 2017 IEEE International Conference on Intelligence and Security Informatics (ISI). :7–12.

Attack graph technique is a common tool for the evaluation of network security. However, attack graphs are generally too large and complex to be understood and interpreted by security administrators. This paper proposes an analysis framework for security attack graphs for a given IT infrastructure system. First, in order to facilitate the discovery of interconnectivities among vulnerabilities in a network, multi-host multi-stage vulnerability analysis (MulVAL) is employed to generate an attack graph for a given network topology. Then a novel algorithm is applied to refine the attack graph and generate a simplified graph called a transition graph. Next, a Markov model is used to project the future security posture of the system. Finally, the framework is evaluated by applying it on a typical IT network scenario with specific services, network configurations, and vulnerabilities.