Visible to the public Biblio

Filters: Keyword is medical domain  [Clear All Filters]
2021-02-01
Mangaokar, N., Pu, J., Bhattacharya, P., Reddy, C. K., Viswanath, B..  2020.  Jekyll: Attacking Medical Image Diagnostics using Deep Generative Models. 2020 IEEE European Symposium on Security and Privacy (EuroS P). :139–157.
Advances in deep neural networks (DNNs) have shown tremendous promise in the medical domain. However, the deep learning tools that are helping the domain, can also be used against it. Given the prevalence of fraud in the healthcare domain, it is important to consider the adversarial use of DNNs in manipulating sensitive data that is crucial to patient healthcare. In this work, we present the design and implementation of a DNN-based image translation attack on biomedical imagery. More specifically, we propose Jekyll, a neural style transfer framework that takes as input a biomedical image of a patient and translates it to a new image that indicates an attacker-chosen disease condition. The potential for fraudulent claims based on such generated `fake' medical images is significant, and we demonstrate successful attacks on both X-rays and retinal fundus image modalities. We show that these attacks manage to mislead both medical professionals and algorithmic detection schemes. Lastly, we also investigate defensive measures based on machine learning to detect images generated by Jekyll.
2018-04-02
Siddiqi, M., All, S. T., Sivaraman, V..  2017.  Secure Lightweight Context-Driven Data Logging for Bodyworn Sensing Devices. 2017 5th International Symposium on Digital Forensic and Security (ISDFS). :1–6.

Rapid advancement in wearable technology has unlocked a tremendous potential of its applications in the medical domain. Among the challenges in making the technology more useful for medical purposes is the lack of confidence in the data thus generated and communicated. Incentives have led to attacks on such systems. We propose a novel lightweight scheme to securely log the data from bodyworn sensing devices by utilizing neighboring devices as witnesses who store the fingerprints of data in Bloom filters to be later used for forensics. Medical data from each sensor is stored at various locations of the system in chronological epoch-level blocks chained together, similar to the blockchain. Besides secure logging, the scheme offers to secure other contextual information such as localization and timestamping. We prove the effectiveness of the scheme through experimental results. We define performance parameters of our scheme and quantify their cost benefit trade-offs through simulation.