Visible to the public Biblio

Filters: Keyword is Simulation Platform  [Clear All Filters]
2019-10-02
Zhang, Y., Eisele, S., Dubey, A., Laszka, A., Srivastava, A. K..  2019.  Cyber-Physical Simulation Platform for Security Assessment of Transactive Energy Systems. 2019 7th Workshop on Modeling and Simulation of Cyber-Physical Energy Systems (MSCPES). :1–6.
Transactive energy systems (TES) are emerging as a transformative solution for the problems that distribution system operators face due to an increase in the use of distributed energy resources and rapid growth in scalability of managing active distribution system (ADS). On the one hand, these changes pose a decentralized power system control problem, requiring strategic control to maintain reliability and resiliency for the community and for the utility. On the other hand, they require robust financial markets while allowing participation from diverse prosumers. To support the computing and flexibility requirements of TES while preserving privacy and security, distributed software platforms are required. In this paper, we enable the study and analysis of security concerns by developing Transactive Energy Security Simulation Testbed (TESST), a TES testbed for simulating various cyber attacks. In this work, the testbed is used for TES simulation with centralized clearing market, highlighting weaknesses in a centralized system. Additionally, we present a blockchain enabled decentralized market solution supported by distributed computing for TES, which on one hand can alleviate some of the problems that we identify, but on the other hand, may introduce newer issues. Future study of these differing paradigms is necessary and will continue as we develop our security simulation testbed.
2018-05-24
Huang, P., Wang, Y., Yan, G..  2017.  Vulnerability Analysis of Electrical Cyber Physical Systems Using a Simulation Platform. IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society. :489–494.

This paper considers a framework of electrical cyber-physical systems (ECPSs) in which each bus and branch in a power grid is equipped with a controller and a sensor. By means of measuring the damages of cyber attacks in terms of cutting off transmission lines, three solution approaches are proposed to assess and deal with the damages caused by faults or cyber attacks. Splitting incident is treated as a special situation in cascading failure propagation. A new simulation platform is built for simulating the protection procedure of ECPSs under faults. The vulnerability of ECPSs under faults is analyzed by experimental results based on IEEE 39-bus system.

2018-04-04
Wei, Li, Tang, Yuxin, Cao, Yuching, Wang, Zhaohui, Gerla, Mario.  2017.  Exploring Simulation of Software-Defined Underwater Wireless Networks. Proceedings of the International Conference on Underwater Networks & Systems. :21:1–21:5.
Multi-modal communication methods have been proposed for underwater wireless networks (UWNs) to tackle the challenging physical characteristics of underwater wireless channels. These include the use of acoustic and optic technology for range-dependent transmissions. Software-defined networking (SDN) is an appealing choice for managing these networks with multi-modal communication capabilities, allowing for increased adaptability in the UWN design. In this work, we develop a simulation platform for software-defined underwater wireless networks (SDUWNs). Similarto OpenNet, this platform integrates Mininet with ns-3 via TapBridge modules. The multi-modal communication is implemented by equipping each ns-3 node with multiple net devices. Multiple channel modules connecting corresponding net devices are configured to reflect the channel characteristics. The proposed simulation platform is validated in a case study for oceanographic data collection.