Biblio
Filters: Keyword is Underwater Wireless Networks [Clear All Filters]
Proactive Alarming-enabled Path Planning for Multi-AUV-based Underwater IoT Systems. 2021 Computing, Communications and IoT Applications (ComComAp). :263—267.
.
2021. The ongoing expansion of underwater Internet of Things techniques promote diverse categories of maritime intelligent systems, e.g., Underwater Acoustic Sensor Networks (UASNs), Underwater Wireless Networks (UWNs), especially multiple Autonomous Underwater Vehicle (AUV) based UWNs have produced many civil and military applications. To enhance the network management and scalability, in this paper, the technique of Software-Defined Networking (SDN) technique is introduced, leading to the paradigm of Software-Defined multi-AUV-based UWNs (SD-UWNs). With SD-UWNs, the network architecture is divided into three functional layers: data layer, control layer, and application layer, and the network administration is re-defined by a framework of software-defined beacon. To manage the network, a control model based on artificial potential field and network topology theory is constructed. On account of the efficient data sharing ability of SD-UWNs, a proactive alarming-enabled path planning scheme is proposed, wherein all potential categories of obstacle avoidance scenes are taken into account. Evaluation results indicate that the proposed SD-UWN is more efficient in scheduling the cooperative network function than the traditional approaches and can secure exact path planning.
Lifetime Analysis of Underwater Wireless Networks Concerning Privacy with Energy Harvesting and Compressive Sensing. 2019 27th Signal Processing and Communications Applications Conference (SIU). :1–4.
.
2019. Underwater sensor networks (UWSN) are a division of classical wireless sensor networks (WSN), which are designed to accomplish both military and civil operations, such as invasion detection and underwater life monitoring. Underwater sensor nodes operate using the energy provided by integrated limited batteries, and it is a serious challenge to replace the battery under the water especially in harsh conditions with a high number of sensor nodes. Here, energy efficiency confronts as a very important issue. Besides energy efficiency, data privacy is another essential topic since UWSN typically generate delicate sensing data. UWSN can be vulnerable to silent positioning and listening, which is injecting similar adversary nodes into close locations to the network to sniff transmitted data. In this paper, we discuss the usage of compressive sensing (CS) and energy harvesting (EH) to improve the lifetime of the network whilst we suggest a novel encryption decision method to maintain privacy of UWSN. We also deploy a Mixed Integer Programming (MIP) model to optimize the encryption decision cases which leads to an improved network lifetime.
Exploring Simulation of Software-Defined Underwater Wireless Networks. Proceedings of the International Conference on Underwater Networks & Systems. :21:1–21:5.
.
2017. Multi-modal communication methods have been proposed for underwater wireless networks (UWNs) to tackle the challenging physical characteristics of underwater wireless channels. These include the use of acoustic and optic technology for range-dependent transmissions. Software-defined networking (SDN) is an appealing choice for managing these networks with multi-modal communication capabilities, allowing for increased adaptability in the UWN design. In this work, we develop a simulation platform for software-defined underwater wireless networks (SDUWNs). Similarto OpenNet, this platform integrates Mininet with ns-3 via TapBridge modules. The multi-modal communication is implemented by equipping each ns-3 node with multiple net devices. Multiple channel modules connecting corresponding net devices are configured to reflect the channel characteristics. The proposed simulation platform is validated in a case study for oceanographic data collection.