Visible to the public Biblio

Filters: Keyword is Fuzz Testing  [Clear All Filters]
2023-02-17
Mahmood, Riyadh, Pennington, Jay, Tsang, Danny, Tran, Tan, Bogle, Andrea.  2022.  A Framework for Automated API Fuzzing at Enterprise Scale. 2022 IEEE Conference on Software Testing, Verification and Validation (ICST). :377–388.
Web-based Application Programming Interfaces (APIs) are often described using SOAP, OpenAPI, and GraphQL specifications. These specifications provide a consistent way to define web services and enable automated fuzz testing. As such, many fuzzers take advantage of these specifications. However, in an enterprise setting, the tools are usually installed and scaled by individual teams, leading to duplication of efforts. There is a need for an enterprise-wide fuzz testing solution to provide shared, cost efficient, off-nominal testing at scale where fuzzers can be plugged-in as needed. Internet cloud-based fuzz testing-as-a-service solutions mitigate scalability concerns but are not always feasible as they require artifacts to be uploaded to external infrastructure. Typically, corporate policies prevent sharing artifacts with third parties due to cost, intellectual property, and security concerns. We utilize API specifications and combine them with cluster computing elasticity to build an automated, scalable framework that can fuzz multiple apps at once and retain the trust boundary of the enterprise.
ISSN: 2159-4848
2023-02-03
Li, Mingxuan, Li, Feng, Yin, Jun, Fei, Jiaxuan, Chen, Jia.  2022.  Research on Security Vulnerability Mining Technology for Terminals of Electric Power Internet of Things. 2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC). 6:1638–1642.
Aiming at the specificity and complexity of the power IoT terminal, a method of power IoT terminal firmware vulnerability detection based on memory fuzzing is proposed. Use the method of bypassing the execution to simulate and run the firmware program, dynamically monitor and control the execution of the firmware program, realize the memory fuzzing test of the firmware program, design an automatic vulnerability exploitability judgment plug-in for rules and procedures, and provide power on this basis The method and specific process of the firmware vulnerability detection of the IoT terminal. The effectiveness of the method is verified by an example.
ISSN: 2693-289X
2022-08-26
Zhang, Haichun, Huang, Kelin, Wang, Jie, Liu, Zhenglin.  2021.  CAN-FT: A Fuzz Testing Method for Automotive Controller Area Network Bus. 2021 International Conference on Computer Information Science and Artificial Intelligence (CISAI). :225–231.
The Controller Area Network (CAN) bus is the de-facto standard for connecting the Electronic Control Units (ECUs) in automobiles. However, there are serious cyber-security risks due to the lack of security mechanisms. In order to mine the vulnerabilities in CAN bus, this paper proposes CAN-FT, a fuzz testing method for automotive CAN bus, which uses a Generative Adversarial Network (GAN) based fuzzy message generation algorithm and the Adaptive Boosting (AdaBoost) based anomaly detection mechanism to capture the abnormal states of CAN bus. Experimental results on a real-world vehicle show that CAN-FT can find vulnerabilities more efficiently and comprehensively.
2022-05-19
Ji, Songyan, Dong, Jian, Qiu, Junfu, Gu, Bowen, Wang, Ye, Wang, Tongqi.  2021.  Increasing Fuzz Testing Coverage for Smart Contracts with Dynamic Taint Analysis. 2021 IEEE 21st International Conference on Software Quality, Reliability and Security (QRS). :243–247.
Nowadays, smart contracts manage more and more digital assets and have become an attractive target for adversaries. To prevent smart contracts from malicious attacks, a thorough test is indispensable and must be finished before deployment because smart contracts cannot be modified after being deployed. Fuzzing is an important testing approach, but most existing smart contract fuzzers can hardly solve the constraints which involve deeply nested conditional statements, resulting in low coverage. To address this problem, we propose Targy, an efficient targeted mutation strategy based on dynamic taint analysis. We obtain the taint flow by dynamic taint propagation, and generate a more accurate mutation strategy for the input parameters of functions to simultaneously satisfy all conditional statements. We implemented Targy on sFuzz with 3.6 thousand smart contracts running on Ethereum. The numbers of covered branches and detected vulnerabilities increase by 6% and 7% respectively, and the average time required for covering a branch is reduced by 11 %.
2020-07-20
Fowler, Daniel S., Bryans, Jeremy, Cheah, Madeline, Wooderson, Paul, Shaikh, Siraj A..  2019.  A Method for Constructing Automotive Cybersecurity Tests, a CAN Fuzz Testing Example. 2019 IEEE 19th International Conference on Software Quality, Reliability and Security Companion (QRS-C). :1–8.
There is a need for new tools and techniques to aid automotive engineers performing cybersecurity testing on connected car systems. This is in order to support the principle of secure-by-design. Our research has produced a method to construct useful automotive security tooling and tests. It has been used to implement Controller Area Network (CAN) fuzz testing (a dynamic security test) via a prototype CAN fuzzer. The black-box fuzz testing of a laboratory vehicle's display ECU demonstrates the value of a fuzzer in the automotive field, revealing bugs in the ECU software, and weaknesses in the vehicle's systems design.
2020-04-03
Zhao, Hui, Li, Zhihui, Wei, Hansheng, Shi, Jianqi, Huang, Yanhong.  2019.  SeqFuzzer: An Industrial Protocol Fuzzing Framework from a Deep Learning Perspective. 2019 12th IEEE Conference on Software Testing, Validation and Verification (ICST). :59—67.

Industrial networks are the cornerstone of modern industrial control systems. Performing security checks of industrial communication processes helps detect unknown risks and vulnerabilities. Fuzz testing is a widely used method for performing security checks that takes advantage of automation. However, there is a big challenge to carry out security checks on industrial network due to the increasing variety and complexity of industrial communication protocols. In this case, existing approaches usually take a long time to model the protocol for generating test cases, which is labor-intensive and time-consuming. This becomes even worse when the target protocol is stateful. To help in addressing this problem, we employed a deep learning model to learn the structures of protocol frames and deal with the temporal features of stateful protocols. We propose a fuzzing framework named SeqFuzzer which automatically learns the protocol frame structures from communication traffic and generates fake but plausible messages as test cases. For proving the usability of our approach, we applied SeqFuzzer to widely-used Ethernet for Control Automation Technology (EtherCAT) devices and successfully detected several security vulnerabilities.

2018-06-11
Tacliad, Francisco, Nguyen, Thuy D., Gondree, Mark.  2017.  DoS Exploitation of Allen-Bradley's Legacy Protocol Through Fuzz Testing. Proceedings of the 3rd Annual Industrial Control System Security Workshop. :24–31.
EtherNet/IP is a TCP/IP-based industrial protocol commonly used in industrial control systems (ICS). TCP/IP connectivity to the outside world has enabled ICS operators to implement more agile practices, but it also has exposed these cyber-physical systems to cyber attacks. Using a custom Scapy-based fuzzer to test for implementation flaws in the EtherNet/IP software of commercial programmable logic controllers (PLC), we uncover a previously unreported denial-of-service (DoS) vulnerability in the Ethernet/IP implementation of the Rockwell Automation/Allen-Bradley MicroLogix 1100 PLC that, if exploited, can cause the PLC to fault. ICS-CERT recently announces this vulnerability in the security advisory ICSA-17-138-03. This paper describes this vulnerability, the development of an EtherNet/IP fuzzer, and an approach to remotely monitor for faults generated when fuzzing.
2018-04-04
Zhang, B., Ye, J., Feng, C., Tang, C..  2017.  S2F: Discover Hard-to-Reach Vulnerabilities by Semi-Symbolic Fuzz Testing. 2017 13th International Conference on Computational Intelligence and Security (CIS). :548–552.
Fuzz testing is a popular program testing technique. However, it is difficult to find hard-to-reach vulnerabilities that are nested with complex branches. In this paper, we propose semi-symbolic fuzz testing to discover hard-to-reach vulnerabilities. Our method groups inputs into high frequency and low frequency ones. Then symbolic execution is utilized to solve only uncovered branches to mitigate the path explosion problem. Especially, in order to play the advantages of fuzz testing, our method locates critical branch for each low frequency input and corrects the generated test cases to comfort the branch condition. We also implemented a prototype\textbackslashtextbarS2F, and the experimental results show that S2F can gain 17.70% coverage performance and discover more hard-to-reach vulnerabilities than other vulnerability detection tools for our benchmark.