Visible to the public Biblio

Filters: Keyword is Adaptive steganography  [Clear All Filters]
2022-10-20
Varma, Dheeraj, Mishra, Shikhar, Meenpal, Ankita.  2020.  An Adaptive Image Steganographic Scheme Using Convolutional Neural Network and Dual-Tree Complex Wavelet Transform. 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1—7.
The technique of concealing a confidential information in a carrier information is known as steganography. When we use digital images as carriers, it is termed as image steganography. The advancements in digital technology and the need for information security have given great significance for image steganographic methods in the area of secured communication. An efficient steganographic system is characterized by a good trade-off between its features such as imperceptibility and capacity. The proposed scheme implements an edge-detection based adaptive steganography with transform domain embedding, offering high imperceptibility and capacity. The scheme employs an adaptive embedding technique to select optimal data-hiding regions in carrier image, using Canny edge detection and a Convolutional Neural Network (CNN). Then, the secret image is embedded in the Dual-Tree Complex Wavelet Transform (DTCWT) coefficients of the selected carrier image blocks, with the help of Singular Value Decomposition (SVD). The analysis of the scheme is performed using metrics such as Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), and Normalized Cross Correlation (NCC).
2020-06-15
Kin-Cleaves, Christy, Ker, Andrew D..  2018.  Adaptive Steganography in the Noisy Channel with Dual-Syndrome Trellis Codes. 2018 IEEE International Workshop on Information Forensics and Security (WIFS). :1–7.
Adaptive steganography aims to reduce distortion in the embedding process, typically using Syndrome Trellis Codes (STCs). However, in the case of non-adversarial noise, these are a bad choice: syndrome codes are fragile by design, amplifying the channel error rate into unacceptably-high payload error rates. In this paper we examine the fragility of STCs in the noisy channel, and consider how this can be mitigated if their use cannot be avoided altogether. We also propose an extension called Dual-Syndrome Trellis Codes, that combines error correction and embedding in the same Viterbi process, which slightly outperforms a straight-forward combination of standard forward error correction and STCs.
2018-04-11
Zhang, Hao, Zhang, Tao, Chen, Huajin.  2017.  Variance Analysis of Pixel-Value Differencing Steganography. Proceedings of the 2017 International Conference on Cryptography, Security and Privacy. :28–32.

As the adaptive steganography selects edge and texture area for loading, the theoretical analysis is limited by modeling difficulty. This paper introduces a novel method to study pixel-value difference (PVD) embedding scheme. First, the difference histogram values of cover image are used as parameters, and a variance formula for PVD stego noise is obtained. The accuracy of this formula has been verified through analysis with standard pictures. Second, the stego noise is divided into six kinds of pixel regions, and the regional noise variances are utilized to compare the security between PVD and least significant bit matching (LSBM) steganography. A mathematical conclusion is presented that, with the embedding capacity less than 2.75 bits per pixel, PVD is always not safer than LSBM under the same embedding rate, regardless of region selection. Finally, 10000 image samples are used to observe the validity of mathematical conclusion. For most images and regions, the data are also shown to be consistent with the prior judgment. Meanwhile, the cases of exception are analyzed seriously, and are found to be caused by randomness of pixel selection and abandoned blocks in PVD scheme. In summary, the unity of theory and practice completely indicates the effectiveness of our new method.